Question #231554

(4z + x²z) dz + (1+z²)dx - (yz² + y)(4+x²)dy=0


1
Expert's answer
2021-09-05T15:19:25-0400

By Lagrange method,

dx1+z2=dy(yz2+y)(4+x2)=dz4z+x2z\frac{dx}{1+z^2}=\frac{dy}{- (yz² + y)(4+x²)}=\frac{dz}{4z+x^2z}\\

By taking the first equation,

dy(yz2+y)(4+x2)=dz4z+x2zdyy(z2+1)(4+x2)=dzz(4+x2)dyy=(1z+z)dz\frac{dy}{- (yz² + y)(4+x²)}=\frac{dz}{4z+x^2z}\\ \frac{dy}{- y(z² + 1)(4+x²)}=\frac{dz}{z(4+x^2)}\\ \frac{dy}{- y}=(\frac{1}{z}+z)dz\\

Integrating both sides,

lny=lnz+z22+cln(1yz)z22=c-lny=lnz+\frac{z^2}{2}+c\\ ln(\frac{1}{yz})-\frac{z^2}{2}=c

And, from the second equation,

dx1+z2=dz4z+x2zdx1+z2=dzz(4+x2)(4+x2)dx=(1z+z)dz4x+x33=lnz+z22+c4x+x33lnzz22=c\frac{dx}{1+z^2}=\frac{dz}{4z+x^2z}\\ \frac{dx}{1+z^2}=\frac{dz}{z(4+x^2)}\\ (4+x^2)dx=(\frac{1}{z}+z)dz\\ 4x+\frac{x^3}{3}=lnz+\frac{z^2}{2}+c\\ 4x+\frac{x^3}{3}-lnz-\frac{z^2}{2}=c

Thus, the general solution is given by

F(ln(1yz)z22,4x+x33lnzz22)=0F(ln(\frac{1}{yz})-\frac{z^2}{2}, 4x+\frac{x^3}{3}-lnz-\frac{z^2}{2})=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS