y ln x ln y dx + dy =0
ylnxlnydx=-dy
lnxdx=-dy/(ylny)
∫lnxdx=fg−∫f′g\intop lnxdx=fg-\int f'g∫lnxdx=fg−∫f′g
f=lnx
g'=1
f'=1/x
g=x
∫lnxdx=xlnx−∫1dx=x(lnx−1)+C\int lnxdx=xlnx- \int 1dx=x(lnx-1)+C∫lnxdx=xlnx−∫1dx=x(lnx−1)+C
∫dyylny\int \frac{dy}{ylny}∫ylnydy
u=lny
du/dy=1/y
dy=ydu∫1udu=lnu\int \frac{1}{u} du= lnu∫u1du=lnu
∫dyylny=ln(lny)+C\int \frac{dy}{ylny}=ln(lny)+C∫ylnydy=ln(lny)+C
x(lnx−1)+C=ln(lny)x(lnx-1)+C=ln(lny)x(lnx−1)+C=ln(lny)
y=eex(lnx−1)+Cy=e^{e^{x(lnx-1)+C}}y=eex(lnx−1)+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments