Question #231549

y ln x ln y dx + dy =0


1
Expert's answer
2021-09-01T08:28:01-0400

ylnxlnydx=-dy

lnxdx=-dy/(ylny)

lnxdx=fgfg\intop lnxdx=fg-\int f'g

f=lnx

g'=1

f'=1/x

g=x

lnxdx=xlnx1dx=x(lnx1)+C\int lnxdx=xlnx- \int 1dx=x(lnx-1)+C

dyylny\int \frac{dy}{ylny}

u=lny

du/dy=1/y

dy=ydu1udu=lnu\int \frac{1}{u} du= lnu

dyylny=ln(lny)+C\int \frac{dy}{ylny}=ln(lny)+C

x(lnx1)+C=ln(lny)x(lnx-1)+C=ln(lny)

y=eex(lnx1)+Cy=e^{e^{x(lnx-1)+C}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS