Question #231184

eliminate the arbitrary constant using any method

13.x^2y^3\:+\:x^3y^5\:=\:C


1
Expert's answer
2021-09-06T16:07:16-0400

x2y3+x3y5=cx^2y^3+x^3y^5=c

Differentiating both sides w.r.t xx , we get

ddx(x2y3+x3y5)=ddx(c)ddx(x2y3)+ddx(x3y5)=02xy3+x2.3y2dydx+3x2y5+x3.5y4dydx=0dydx(3x2y2+5x3y4)+2xy3+3x2y5=0dydx=2xy3+3x2y53x2y2+5x3y4\frac{d}{dx}(x^2y^3+x^3y^5)=\frac{d}{dx}(c) \\\Rightarrow \frac{d}{dx}(x^2y^3)+\frac{d}{dx}(x^3y^5)=0 \\\Rightarrow 2xy^3+x^2.3y^2\frac{dy}{dx}+3x^2y^5+x^3.5y^4\frac{dy}{dx}=0 \\\Rightarrow \frac{dy}{dx}(3x^2y^2+5x^3y^4)+2xy^3+3x^2y^5=0 \\\Rightarrow \frac{dy}{dx}=-\frac{2xy^3+3x^2y^5}{3x^2y^2+5x^3y^4}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS