eliminate the arbitrary constant using any method
13.x^2y^3\:+\:x^3y^5\:=\:C
x2y3+x3y5=cx^2y^3+x^3y^5=cx2y3+x3y5=c
Differentiating both sides w.r.t xxx , we get
ddx(x2y3+x3y5)=ddx(c)⇒ddx(x2y3)+ddx(x3y5)=0⇒2xy3+x2.3y2dydx+3x2y5+x3.5y4dydx=0⇒dydx(3x2y2+5x3y4)+2xy3+3x2y5=0⇒dydx=−2xy3+3x2y53x2y2+5x3y4\frac{d}{dx}(x^2y^3+x^3y^5)=\frac{d}{dx}(c) \\\Rightarrow \frac{d}{dx}(x^2y^3)+\frac{d}{dx}(x^3y^5)=0 \\\Rightarrow 2xy^3+x^2.3y^2\frac{dy}{dx}+3x^2y^5+x^3.5y^4\frac{dy}{dx}=0 \\\Rightarrow \frac{dy}{dx}(3x^2y^2+5x^3y^4)+2xy^3+3x^2y^5=0 \\\Rightarrow \frac{dy}{dx}=-\frac{2xy^3+3x^2y^5}{3x^2y^2+5x^3y^4}dxd(x2y3+x3y5)=dxd(c)⇒dxd(x2y3)+dxd(x3y5)=0⇒2xy3+x2.3y2dxdy+3x2y5+x3.5y4dxdy=0⇒dxdy(3x2y2+5x3y4)+2xy3+3x2y5=0⇒dxdy=−3x2y2+5x3y42xy3+3x2y5
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments