Question #230934

Find all solutions of the given differential equations and then find the particular solutions for which a point (x,y) is given:


dy/dx = x


1
Expert's answer
2021-09-05T14:23:00-0400

First we solve the integral by separating the terms:


dydx=xdy=y=xdx=x22+C    y=x22+C\frac{dy}{dx}={x} \to \intop dy=y=\int{xdx}=\frac{x^{2}}{2}+C \\\implies y=\frac{x^{2}}{2}+C


Then, we substitute the coordinates (xi,yi) to find C for the particular solution:


yi=xi22+C    C=yixi22y_i=\frac{x_i^{2}}{2}+C \implies C=y_i-\frac{x_i^{2}}{2}


In conclusion:


General solution: y=x22+CParticular solution (xi,yi):y=x22+yixi22\text{General solution: } \\ y=\frac{x^{2}}{2}+C \\ \text{Particular solution } (x_i,y_i):\\ y=\frac{x^{2}}{2}+y_i-\cfrac{x_i^{2}}{2} ​


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS