First we solve the integral by separating the terms:
dxdy=x→∫dy=y=∫xdx=2x2+C⟹y=2x2+C
Then, we substitute the coordinates (xi,yi) to find C for the particular solution:
yi=2xi2+C⟹C=yi−2xi2
In conclusion:
General solution: y=2x2+CParticular solution (xi,yi):y=2x2+yi−2xi2
Comments