First we solve the integral by separating the terms:
dxdy=x+3⟹∫dy=∫(x+3)dxy=∫ x1/2dx+3∫dx=3/2x3/2+3x+Cy=32x3/2+3x+C
Then, we substitute the coordinates (x,y) to find C for the particular solution:
3=32(−1)3/2+3(−1)+C⟹3=−32i−3+C→C=6+32i
In conclusion:
General solution: y=32x3/2+3x+CParticular solution: y=32x3/2+3x+6+32i
Comments