Question #230929

Find all solutions of the given differential equations and then find the particular solutions for which a point (x,y) is given:


dy/dx = √x + 3 ; (x,y) =(-1,3)


1
Expert's answer
2021-09-02T14:26:22-0400

First we solve the integral by separating the terms:


dydx=x+3    dy=(x+3)dxy= x1/2dx+3dx=x3/23/2+3x+Cy=2x3/23+3x+C\frac{dy}{dx}=\sqrt{x}+3 \\ \implies \intop dy=\int(\sqrt{x}+3)dx \\y=\int\ x^{1/2}dx+3\int dx=\frac{x^{3/2}}{3/2}+3x+C \\y=\frac{2x^{3/2}}{3}+3x+C


Then, we substitute the coordinates (x,y) to find C for the particular solution:


3=2(1)3/23+3(1)+C    3=2i33+CC=6+2i33=\frac{2(-1)^{3/2}}{3}+3(-1)+C \\ \implies 3=-\frac{2i}{3}-3+C \\ \to C=6+\frac{2i}{3}


In conclusion:


General solution: y=2x3/23+3x+CParticular solution: y=2x3/23+3x+6+2i3\text{General solution: } \\ y=\frac{2x^{3/2}}{3}+3x+C \\ \text{Particular solution: } \\ y=\frac{2x^{3/2}}{3}+3x+6+\frac{2i}{3}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS