Question #230925

Find all solutions of the given differential equations and then find the particular solutions for which a point (x,y) is given:


dy/dx = (3x - 4)


1
Expert's answer
2021-09-01T19:05:17-0400

dydx=3x4dy=(3x4)dxIntegrating both side, we gety=32x24x+cThis is the general solution. There are infinite solution because c has infinite choices.To find particular solution we need one initial condition. So that, we get a fixed value of constant c.\frac{dy}{dx}=3x-4\\ dy=(3x-4)dx\\ \text{Integrating both side, we get}\\ y=\frac{3}{2}x^2-4x+c\\ \text{This is the general solution. There are infinite solution because c has infinite choices.}\\ \text{To find particular solution we need one initial condition. So that, we get a fixed value of constant c.}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS