Standard pde is Pp+Qq=R,
where p=∂ z ∂ x \frac{ \partial z}{\partial x} ∂ x ∂ z and q=∂ z ∂ y \frac{ \partial z}{\partial y} ∂ y ∂ z .
Comparing the given pde with the standard pde.
We get, P=z, Q=-z, R=z2 +(x+y)2
By lagrange method,
d x P = d y Q = d z R d x z = d y − z = d z z 2 + ( x + y ) 2 \frac{dx}{P}=\frac{dy}{Q}=\frac{dz}{R}\\
\frac{dx}{z}=\frac{dy}{-z}=\frac{dz}{z^2+(x+y)^2}\\ P d x = Q d y = R d z z d x = − z d y = z 2 + ( x + y ) 2 d z
By taking first equation,
d x z = d y − z d x = − d y x = − y + c 1 x + y = c 1 \frac{dx}{z}=\frac{dy}{-z}\\
dx=-dy\\
x=-y+c_1\\
x+y=c_1 z d x = − z d y d x = − d y x = − y + c 1 x + y = c 1
By taking second equation,
d y z = d z z 2 + ( x + y ) 2 d y = z z 2 + c 1 2 d z [ from first equation ] d y = 1 2 2 z z 2 + c 1 2 d z \frac{dy}{z}=\frac{dz}{z^2+(x+y)^2}\\
dy=\frac{z}{z^2+c_1^2}dz
[ \space \text{from first equation}]\\
dy=\frac{1}{2}\frac{2z}{z^2+c_1^2}dz z d y = z 2 + ( x + y ) 2 d z d y = z 2 + c 1 2 z d z [ from first equation ] d y = 2 1 z 2 + c 1 2 2 z d z
Integrating both side, we get
y = 1 2 l n ( z 2 + c 1 2 ) + c 2 y − l n ( z 2 + ( x + y ) 2 ) = c 2 y=\frac{1}{2}ln(z^2+c_1^2)+c_2\\
y-ln\sqrt{(z^2+(x+y)^2)}=c_2 y = 2 1 l n ( z 2 + c 1 2 ) + c 2 y − l n ( z 2 + ( x + y ) 2 ) = c 2
Therefore, the solution is given by
F ( x + y , y − l n ( z 2 + ( x + y ) 2 ) ) = 0 F(x+y, y-ln\sqrt{(z^2+(x+y)^2)})=0 F ( x + y , y − l n ( z 2 + ( x + y ) 2 ) ) = 0
Comments