s o l v e ( y ′ ) 2 = 1 − y 2 1 − x 2 , y ( 1 ) = 1 2 , y ′ = ± 1 − y 2 1 − x 2 d y 1 − y 2 = ± d x 1 − x 2 ∫ d y 1 − y 2 = ± ∫ d x 1 − x 2 ln ∣ y + 1 − y 2 ∣ = ± ln ∣ x + 1 − x 2 ∣ + ln ∣ c ∣ [ y + 1 − y 2 = c ( x + 1 − x 2 ) , y + 1 − y 2 = c ( x + 1 − x 2 ) . y ( 1 ) = 1 2 . [ 1 2 + 1 − ( 1 2 ) 2 = c ( 1 + 1 − 1 2 ) , 1 2 + 1 − ( 1 2 ) 2 = c ( 1 + 1 − 1 2 ) . [ 1 2 + 3 4 = c , 1 2 + 3 4 = c . c = 1 + 3 2 a n s w e r : [ y + 1 − y 2 = ( 1 + 3 ) 2 ( x + 1 − x 2 ) , y + 1 − y 2 = 1 + 3 2 ( x + 1 − x 2 ) . solve ~ (y^{\prime})^2= \frac{1-y^2}{1-x^2}, ~ y(1)=\frac{1}{2}, \\
y^{\prime} = \pm\sqrt{\frac{1-y^2}{1-x^2}}\\
\frac{dy}{\sqrt{1-y^2}}=\pm\frac{dx}{\sqrt{1-x^2}}\\
\int\frac{dy}{\sqrt{1-y^2}}=\pm\int\frac{dx}{\sqrt{1-x^2}}\\
\ln{|y+\sqrt{1-y^2}|}=\pm\ln{|x+\sqrt{1-x^2}|} +\ln|c| \\
\left[
\begin{gathered}
y+\sqrt{1-y^2}=c(x+\sqrt{1-x^2}),\\
y+\sqrt{1-y^2}=\frac{c}{(x+\sqrt{1-x^2})}.\\
\end{gathered}
\right.\\
y(1)=\frac{1}{2}.\\
\left[
\begin{gathered}
\frac{1}{2}+\sqrt{1-(\frac{1}{2})^2}=c(1+\sqrt{1-1^2}),\\
\frac{1}{2}+\sqrt{1-(\frac{1}{2})^2}=\frac{c}{(1+\sqrt{1-1^2})}.\\
\end{gathered}
\right.\\
\left[
\begin{gathered}
\frac{1}{2}+\sqrt{\frac{3}{4}}=c,\\
\frac{1}{2}+\sqrt{\frac{3}{4}}=c.\\
\end{gathered}
\right.\\
c=\frac{1+\sqrt{3}}{2}\\
answer: \\ \left[
\begin{gathered}
y+\sqrt{1-y^2}=\frac{(1+\sqrt{3})}{2}(x+\sqrt{1-x^2}),\\
y+\sqrt{1-y^2}=\frac{1+\sqrt{3}}{2(x+\sqrt{1-x^2})}.\\
\end{gathered}
\right.\\ so l v e ( y ′ ) 2 = 1 − x 2 1 − y 2 , y ( 1 ) = 2 1 , y ′ = ± 1 − x 2 1 − y 2 1 − y 2 d y = ± 1 − x 2 d x ∫ 1 − y 2 d y = ± ∫ 1 − x 2 d x ln ∣ y + 1 − y 2 ∣ = ± ln ∣ x + 1 − x 2 ∣ + ln ∣ c ∣ ⎣ ⎡ y + 1 − y 2 = c ( x + 1 − x 2 ) , y + 1 − y 2 = ( x + 1 − x 2 ) c . y ( 1 ) = 2 1 . ⎣ ⎡ 2 1 + 1 − ( 2 1 ) 2 = c ( 1 + 1 − 1 2 ) , 2 1 + 1 − ( 2 1 ) 2 = ( 1 + 1 − 1 2 ) c . ⎣ ⎡ 2 1 + 4 3 = c , 2 1 + 4 3 = c . c = 2 1 + 3 an s w er : ⎣ ⎡ y + 1 − y 2 = 2 ( 1 + 3 ) ( x + 1 − x 2 ) , y + 1 − y 2 = 2 ( x + 1 − x 2 ) 1 + 3 .
Comments