Question #230599

If 2xy3 +3ycos(xy)+(cx2y2 +3xcos(xy))y=0 is an exact equation, what isthe value of c?


1
Expert's answer
2021-09-02T00:19:45-0400

The given equation can also be written as (2xy3+3ycosxy)dx+(cx2y2+3xcosxy)dyLet u=2xy3+3ycosxy and v=cx2y2+3xcosxyNext, we differentiate u with respect to y and v with respect to yTherefore, uy=6xy2+3cosxy3xysinxyvx=2cxy2+3cosxy3xysinxyFor the differential equation to be exact ux=vxHence comparing both equations we have that2c=6    c=3\text{The given equation can also be written as } \\(2xy^3 + 3y\cos xy)dx + (cx^2y^2+3x \cos xy)dy \\\text{Let $u=2xy^3 + 3y\cos xy$ and $v=cx^2y^2+3x \cos xy$} \\\text{Next, we differentiate u with respect to y and v with respect to y} \\\text{Therefore, } \frac{\partial u}{\partial y} = 6xy^2+ 3\cos xy - 3xy \sin xy \\\frac{\partial v}{\partial x} = 2cxy^2+ 3\cos xy - 3xy \sin xy \\\text{For the differential equation to be exact $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial x}$} \\\text{Hence comparing both equations we have that} \\2c =6 \implies c = 3


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS