Question #230586

 Find the general solution of the differential equation: dy = 2t y +(cost)et2


1
Expert's answer
2021-08-30T16:28:42-0400

dydt=2ty+(cost)et2dydt2ty=(cost)et2This is a linear differential equation.Integrating factor, IF=e2tdt=et2Therefore, solution is given byyet2=et2(cost)et2dtyet2=cost dtyet2=sint+cy=et2(sint+c)\frac{dy}{dt} = 2t y +(cost)e^{t^2}\\ \frac{dy}{dt} -2t y =(cost)e^{t^2}\\ \text{This is a linear differential equation.}\\ \text{Integrating factor, IF}=e^{\int-2tdt}=e^{-t^2}\\ \text{Therefore, solution is given by}\\ ye^{-t^2}=\int e^{-t^2}(cost)e^{t^2}dt\\ ye^{-t^2}=\int cost \space dt\\ ye^{-t^2}=sint+c\\ y=e^{t^2}(sint+c)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS