Verify that y(t) =(sint)et2 is a solution of dy =2t y+(cost)et2
y(t)=et2sinty(t) =e^{t^2}\sin ty(t)=et2sint
y′(t)=(et2)′sint+et2(sint)′=2tet2sint+et2cost=2ty+et2costy'(t) =(e^{t^2})'\sin t+e^{t^2}(\sin t)'=2te^{t^2}\sin t+e^{t^2}\cos t=2ty+e^{t^2}\cos ty′(t)=(et2)′sint+et2(sint)′=2tet2sint+et2cost=2ty+et2cost
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments