Question #229469
y′ =y/x(x-x^3) ; y = −2 when x = 2




1
Expert's answer
2021-08-30T19:11:46-0400

y=yx(xx3)=yy=1x(xx3)Next, we integrate the expression above, to do this we resolve 1x(xx3) using partial fractions    1x(xx3)=12(1x)+12(1+x)+1x2    iny=1211x+1211+x+1x2=iny=12in(1x)+12in(1+x)x1+cTaking the exponent of the expression abovey=(1+x1x)12ex1+ASubstituting y = -2, x= 2, we have thatA=0.3511.73i    y=(1+x1x)12ex10.351i.73i\displaystyle y' = \frac{y}{x(x-x^3)} \\= \frac{y'}{y}= \frac{1}{x(x-x^3)} \\\text{Next, we integrate the expression above, to do this we resolve $\frac{1}{x(x-x^3)}$ using partial } \\\text{fractions} \\\implies \frac{1}{x(x-x^3)}=\frac{1}{2(1-x)}+\frac{1}{2(1+x)}+\frac{1}{x^2} \\\implies iny =\frac{1}{2}\int \frac{1}{1-x} + \frac{1}{2}\int \frac{1}{1+x} + \int \frac{1}{x^2} \\= iny = -\frac{1}{2}in(1-x)+\frac{1}{2}in(1+x)-x^{-1}+c \\\text{Taking the exponent of the expression above} \\y = (\frac{1+x}{1-x})^\frac{1}{2}-e^{x^{-1}}+A \\\text{Substituting y = -2, x= 2, we have that} \\ A=-0.351-1.73i \\\implies y = (\frac{1+x}{1-x})^\frac{1}{2}-e^{x^{-1}}-0.351-i.73i


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS