y′=x(x−x3)y=yy′=x(x−x3)1Next, we integrate the expression above, to do this we resolve x(x−x3)1 using partial fractions⟹x(x−x3)1=2(1−x)1+2(1+x)1+x21⟹iny=21∫1−x1+21∫1+x1+∫x21=iny=−21in(1−x)+21in(1+x)−x−1+cTaking the exponent of the expression abovey=(1−x1+x)21−ex−1+ASubstituting y = -2, x= 2, we have thatA=−0.351−1.73i⟹y=(1−x1+x)21−ex−1−0.351−i.73i
Comments