Question #228417
1. Form the partial differential equation by eliminating
the arbitrary constants a and b from z=ax+by.
2. Form the partial differential equation by eliminating
the arbitrary constants a and b from z=ax
1
Expert's answer
2021-08-24T18:58:41-0400

1. Given z=ax+by then we will have the following: zx=a and zy=bInserting these into z=ax+by we havez=xzx+yzywhich is equivalent to: xzx+yzyz=02. Given z=ax then we will have the following: zx=aInserting these into z=ax we havez=xzx\text{1. Given \( z = ax + by\) then we will have the following: } \\ \displaystyle \frac{\partial z}{\partial x} = a \text{ and } \displaystyle \frac{\partial z}{\partial y} = b\\ \text{Inserting these into \(z = ax + by\) we have}\\ \displaystyle z = x\frac{\partial z}{\partial x} +y\frac{\partial z}{\partial y} \\ \text{which is equivalent to: } \\ x\frac{\partial z}{\partial x} +y\frac{\partial z}{\partial y} - z = 0 \\ \text{2. Given \( z = ax \) then we will have the following: } \\ \displaystyle \frac{\partial z}{\partial x} = a \\ \text{Inserting these into \(z = ax\) we have}\\ \displaystyle z = x\frac{\partial z}{\partial x}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS