The particular integral of (x2D2-xD+4)Y=COS(LOGX)is
1
Expert's answer
2021-08-23T16:22:26-0400
(x2D2−xD+4)y=cos(logx)By euler equation.(D′(D′−1)−D′+4)y=cosz(D′2−2D′+4)y=coszhomogeneous differential equation is given by(D′2−2D′+4)y=0Auxiliary equation,m2−m+4=0m=1±3iTherefore, general solution of homogeneous differential equationisy=ez(c1cos(3z)+c2sin(3z))y=x(c1cos(3logx)+c2sin(3logx))Now,finding the particular solution yp=(D′2−2D′+4)1cosz=(−(1)2−2D′+4)1cosz=(3−2D′)1cosz=(9−4D′2)3+2D′cosz(Rationalise)=(9−4(−(1)2)3+2D′cosz=133+2D′cosz=131(3cosz−2sinz)=131(3cos(logx)−2sin(logx))Therefore, general solution of the given differential equation isy=x(c1cos(3logx)+c2sin(3logx))+131(3cos(logx)−2sin(logx))
Comments