Question #228203
The particular integral of (x2D2-xD+4)Y=COS(LOGX)is
1
Expert's answer
2021-08-23T16:22:26-0400

(x2D2xD+4)y=cos(logx)By euler equation.(D(D1)D+4)y=cosz(D22D+4)y=coszhomogeneous differential equation is given by(D22D+4)y=0Auxiliary equation,m2m+4=0m=1±3iTherefore, general solution of homogeneous differential equationisy=ez(c1cos(3z)+c2sin(3z))y=x(c1cos(3logx)+c2sin(3logx))Now,finding the particular solution yp=1(D22D+4)cosz=1((1)22D+4)cosz=1(32D)cosz=3+2D(94D2)cosz (Rationalise)=3+2D(94((1)2)cosz=3+2D13cosz=113(3cosz2sinz)=113(3cos(logx)2sin(logx))Therefore, general solution of the given differential equation isy=x(c1cos(3logx)+c2sin(3logx))+113(3cos(logx)2sin(logx))(x^2D^2-xD+4)y=cos(logx)\\ \text{By euler equation.}\\ (D'(D'-1)-D'+4)y=cosz\\ (D'^2-2D'+4)y=cosz\\ \text{homogeneous differential equation is given by}\\ (D'^2-2D'+4)y=0\\ \text{Auxiliary equation,}\\ m^2-m+4=0\\ m=1\pm\sqrt3i\\ \text{Therefore, general solution of homogeneous differential equationis}\\y=e^z(c_1cos(\sqrt3z)+c_2sin(\sqrt3z))\\ y=x(c_1cos(\sqrt3logx)+c_2sin(\sqrt3logx))\\ \text{Now,finding the particular solution }\\ y_p=\frac{1}{(D'^2-2D'+4)}cosz\\ =\frac{1}{(-(1)^2-2D'+4)}cosz\\ =\frac{1}{(3-2D')}cosz\\ =\frac{3+2D'}{(9-4D'^2)}cosz\space (\text{Rationalise})\\ =\frac{3+2D'}{(9-4(-(1)^2)}cosz\\ =\frac{3+2D'}{13}cosz\\ =\frac{1}{13}(3cosz-2sinz)\\ =\frac{1}{13}(3cos(logx)-2sin(logx))\\ \text{Therefore, general solution of the given differential equation is}\\ y=x(c_1cos(\sqrt3logx)+c_2sin(\sqrt3logx))+\frac{1}{13}(3cos(logx)-2sin(logx))


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS