Question #227299

The amount A in a fixed account at any time t is known to satisfy the the differential equation

d2A/dt2+tdA/dt+(t2-4)A=0. Express A as a series in powers of t.


1
Expert's answer
2021-08-23T15:56:16-0400

The given differential equation can be written asA+tA+(t24)A=0The entire set of real numbers are ordinary points, therefore we find theseries solution around the point 0Let A = n=0antnA=n=1nantn1A=n=2n(n1)antn2n=2n(n1)antn2+tn=1nantn1+n=0antn+n=0an2tn=0Shifting index of summation, we have n=2[(n+2)(n+1)an+24an+an+an2]xn=0    an+2=3anan2(n+2)(n+1)Next we compute an+2 for n=0,1,2,3,a2=a02,a3=a12    an+2=3anan2(n+2)(n+1),n=2,3,4,a4=a024,a5=a140a6=a080=a0+a1t+a02t2+a12t3+a024t4+a140t5\text{The given differential equation can be written as} \\A''+tA'+(t^2-4)A=0 \\\text{The entire set of real numbers are ordinary points, therefore we find the} \\\text{series solution around the point 0} \\\text{Let A = $\sum_{n=0}^{\infty}a_nt^n$, $A' = \sum_{n=1}^{\infty}na_nt^{n-1}$, $A''=\sum^{\infty}_{n=2}n(n-1)a_nt^{n-2}$} \\\sum^{\infty} _{n=2}n(n-1)a_nt^{n-2} + t\sum^\infty_{n=1}na_nt^{n-1} + \sum^\infty_{n=0}a_nt^n+\sum^\infty_{n=0}a_{n-2}t^n=0 \\ \text{Shifting index of summation, we have } \\\sum^\infty_{n=2}[(n+2)(n+1)a_{n+2}-4a_n+a_n+a_{n-2}]x^n=0 \\\implies a_{n+2}=\frac{3a_n-a_{n-2}}{(n+2)(n+1)} \\\text{Next we compute $a_{n+2}$ for n=0,1,2,3,$\cdots$} \\a_2 = \frac{a_0}{2}, a_3 = \frac{a_1}{2} \\\implies a_{n+2}= \frac{3a_n-a_{n-2}}{(n+2)(n+1)}, n = 2,3,4,\cdots \\a_4 = \frac{a_0}{24}, a_5 = \frac{a_1}{40} \\a_6= -\frac{a_0}{80} \\=a_0+a_1t+\frac{a_0}{2}t^2+\frac{a_1}{2}t^3+\frac{a_0}{24}t^4+\frac{a_1}{40}t^5


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS