The given differential equation can be written asA′′+tA′+(t2−4)A=0The entire set of real numbers are ordinary points, therefore we find theseries solution around the point 0Let A = ∑n=0∞antn, A′=∑n=1∞nantn−1, A′′=∑n=2∞n(n−1)antn−2∑n=2∞n(n−1)antn−2+t∑n=1∞nantn−1+∑n=0∞antn+∑n=0∞an−2tn=0Shifting index of summation, we have ∑n=2∞[(n+2)(n+1)an+2−4an+an+an−2]xn=0⟹an+2=(n+2)(n+1)3an−an−2Next we compute an+2 for n=0,1,2,3,⋯a2=2a0,a3=2a1⟹an+2=(n+2)(n+1)3an−an−2,n=2,3,4,⋯a4=24a0,a5=40a1a6=−80a0=a0+a1t+2a0t2+2a1t3+24a0t4+40a1t5
Comments