Question #227294

Using Taylor series expression, find a power series solution for the equation

2x2d2y/dx2-xdy/dx+(x-5)y=0 in powers of (x-1) if y(1)=4 and y'(1)=2


1
Expert's answer
2021-08-24T08:32:25-0400

Solution;

Taylors series expansion of f(x) at x=a is given as follows;

f(x)=f(a)+f(a)(xa)+f(a)2!(xa)2+f(a)3!(xa)3+...f(x)=f(a)+f'(a)(x-a)+\frac{f''(a)}{2!}(x-a)^2+\frac{f'''(a)}{3!}(x-a)^3+...

Given;x=1

We have;

f(x)=f(1)+f(1)(x1)+f(1)2!(x1)2+f(1)3!(x1)+...f(x)=f(1)+f'(1)(x-1)+\frac{f''(1)}{2!}(x-1)^2+\frac{f'''(1)}{3!}(x-1)+...

Since;

y(1)=4

y'(1)=2

Also;

2x2d2ydx2xdydx+(x5)y=02x^2\frac{d^2y}{dx^2}-x\frac{dy}{dx}+(x-5)y=0

By direct substitution;

2(12)y1(2)+(15)(4)=02(1^2)y''-1(2)+(1-5)(4)=0

2y216=02y''-2-16=0

y(1)=9y''(1)=9

Now we find the triple derivative at x=1;

2x2d2ydx2xdydx+(x5)y=02x^2\frac{d^2y}{dx^2}-x\frac{dy}{dx}+(x-5)y=0

Factorise to obtain;

2x2d2ydx2xdydx+xy5y=02x^2\frac{d^2y}{dx^2}-x\frac{dy}{dx}+xy-5y=0

Differentiate by applying the product rule;

[2x2d3ydx3+d2ydx2(4x)][xd2ydx2+dydx]+[xdydx+y]0=0[2x^2\frac{d^3y}{dx^3}+\frac{d^2y}{dx^2}(4x)]-[x\frac{d^2y}{dx^2}+\frac{dy}{dx}]+[x\frac{dy}{dx}+y]-0=0

By direct substitution;

2(12)y+(9)(4×1)(1)(9)2+(1)(2)+4=02(1^2)y'''+(9)(4×1)-(1)(9)-2+(1)(2)+4=0

Simplify to obtaining;

y(1)=312y'''(1)=-\frac{31}{2}

Hence we have the power solution series as;

f(x)=4+2(x1)+92!(x1)2312×3!(x1)3+...f(x)=4+2(x-1)+\frac9{2!}(x-1)^2-\frac{31}{2×3!}(x-1)^3+...

Simplify;

f(x)=4+2(x1)+92(x1)23112(x1)3+...f(x)=4+2(x-1)+\frac92(x-1)^2-\frac{31}{12}(x-1)^3+...















Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS