Let us find the relation of the variable w if the growth rate is given by
dtdw=αkw(α−w), k>0, at t=0, w=1+βα.
It follows that
w(α−w)αdw=kdt
∫w(α−w)αdw=∫kdt
∫(α−w1+w1)dw=∫kdt
ln∣w∣−ln∣α−w∣=kt+C1
ln∣α−ww∣=kt+C1
α−ww=C2ekt
w=C2ekt(α−w)
w=C2ektα−wC2ekt
w(1+C2ekt)=C2ektα
w=1+C2ektC2αekt
Since at t=0, w=1+βα, we have that
1+βα=1+C2C2α
1+β1=1+C2C2
1+C2=C2+βC2
1=βC2
C2=β1
We conclude that
w=1+β1ektβ1αekt=β+ektαekt.
Comments