Question #227282

Find the relation of the variable w if the growth rate is given by


dw/dt=(kw(α-w))/α, k>0, at t=0,w=α/(1+β)


1
Expert's answer
2021-08-23T07:28:20-0400

Let us find the relation of the variable ww if the growth rate is given by


dwdt=kw(αw)α,  k>0,\frac{dw}{dt}=\frac{kw(α-w)}{α},\ \ k>0, at t=0, w=α1+β.t=0,\ w=\frac{α}{1+β}.


It follows that


αdww(αw)=kdt\frac{\alpha dw}{w(α-w)}=kdt


αdww(αw)=kdt\int\frac{\alpha dw}{w(α-w)}=\int kdt


(1αw+1w)dw=kdt\int(\frac{1}{α-w}+\frac{1}{w})dw=\int kdt


lnwlnαw=kt+C1\ln|w|-\ln|\alpha -w|=kt+C_1


lnwαw=kt+C1\ln|\frac{w}{\alpha -w}|=kt+C_1


wαw=C2ekt\frac{w}{\alpha -w}=C_2e^{kt}


w=C2ekt(αw)w=C_2e^{kt}(\alpha -w)


w=C2ektαwC2ektw=C_2e^{kt}\alpha -wC_2e^{kt}


w(1+C2ekt)=C2ektαw (1+C_2e^{kt})=C_2e^{kt}\alpha


w=C2αekt1+C2ektw =\frac{C_2\alpha e^{kt}}{1+C_2e^{kt}}


Since at t=0, w=α1+β,t=0,\ w=\frac{α}{1+β}, we have that


α1+β=C2α1+C2\frac{α}{1+β}=\frac{C_2\alpha}{1+C_2}


11+β=C21+C2\frac{1}{1+β}=\frac{C_2}{1+C_2}


1+C2=C2+βC21+C_2=C_2+\beta C_2


1=βC21=\beta C_2


C2=1βC_2=\frac{1}{\beta}


We conclude that


w=1βαekt1+1βekt=αektβ+ekt.w =\frac{\frac{1}{\beta}\alpha e^{kt}}{1+\frac{1}{\beta}e^{kt}}=\frac{\alpha e^{kt}}{\beta+e^{kt}}.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS