Question #227182

Using annihilator method obtain particular solution of y"'+y= cosx+sinx


1
Expert's answer
2021-08-19T14:04:02-0400

Corresponding homogeneous differential equation


y+y=0y'''+y=0

Characteristic equarion


r3+1=0r^3+1=0

(r+1)(r2r+1)=0(r+1)(r^2-r+1)=0

r1=1,r2=1232i,r3=12+32ir_1=-1, r_2=\dfrac{1}{2}-\dfrac{\sqrt{3}}{2}i, r_3=\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}i

The general solution of the homogeneous differential equation


yh=c1ex+c2ex/2sin(32x)+c3ex/2cos(32x)y_h=c_1e^{-x}+c_2e^{x/2}\sin (\dfrac{\sqrt{3}}{2}x)+c_3e^{x/2}\cos (\dfrac{\sqrt{3}}{2}x)




(D3+1)y=cosx+sinx(D^3+1)y=\cos x+\sin x

Find the particular solution of the nonhomogeneous differential equation


yp=Acosx+Bsinxy_p=A\cos x+B\sin x

Then


yp=Asinx+Bcosxy_p'=-A\sin x+B\cos x

yp=AcosxBsinxy_p''=-A\cos x-B\sin x




yp=AsinxBcosxy_p'''=A\sin x-B\cos x

Substitute


AsinxBcosx+Acosx+Bsinx=A\sin x-B\cos x+A\cos x+B\sin x=

=cosx+sinx=\cos x+\sin x


A+B=1A+B=1

B+A=1-B+A=1

A=1A=1

B=0B=0

The particular solution of the nonhomogeneous differential equation is


yp=cosxy_p=\cos x




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Janu
21.08.21, 07:54

Thank you so much

LATEST TUTORIALS
APPROVED BY CLIENTS