Corresponding homogeneous differential equation
y ′ ′ ′ + y = 0 y'''+y=0 y ′′′ + y = 0 Characteristic equarion
r 3 + 1 = 0 r^3+1=0 r 3 + 1 = 0
( r + 1 ) ( r 2 − r + 1 ) = 0 (r+1)(r^2-r+1)=0 ( r + 1 ) ( r 2 − r + 1 ) = 0
r 1 = − 1 , r 2 = 1 2 − 3 2 i , r 3 = 1 2 + 3 2 i r_1=-1, r_2=\dfrac{1}{2}-\dfrac{\sqrt{3}}{2}i, r_3=\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}i r 1 = − 1 , r 2 = 2 1 − 2 3 i , r 3 = 2 1 + 2 3 i The general solution of the homogeneous differential equation
y h = c 1 e − x + c 2 e x / 2 sin ( 3 2 x ) + c 3 e x / 2 cos ( 3 2 x ) y_h=c_1e^{-x}+c_2e^{x/2}\sin (\dfrac{\sqrt{3}}{2}x)+c_3e^{x/2}\cos (\dfrac{\sqrt{3}}{2}x) y h = c 1 e − x + c 2 e x /2 sin ( 2 3 x ) + c 3 e x /2 cos ( 2 3 x )
( D 3 + 1 ) y = cos x + sin x (D^3+1)y=\cos x+\sin x ( D 3 + 1 ) y = cos x + sin x
Find the particular solution of the nonhomogeneous differential equation
y p = A cos x + B sin x y_p=A\cos x+B\sin x y p = A cos x + B sin x Then
y p ′ = − A sin x + B cos x y_p'=-A\sin x+B\cos x y p ′ = − A sin x + B cos x
y p ′ ′ = − A cos x − B sin x y_p''=-A\cos x-B\sin x y p ′′ = − A cos x − B sin x
y p ′ ′ ′ = A sin x − B cos x y_p'''=A\sin x-B\cos x y p ′′′ = A sin x − B cos x
Substitute
A sin x − B cos x + A cos x + B sin x = A\sin x-B\cos x+A\cos x+B\sin x= A sin x − B cos x + A cos x + B sin x =
= cos x + sin x =\cos x+\sin x = cos x + sin x
A + B = 1 A+B=1 A + B = 1
− B + A = 1 -B+A=1 − B + A = 1
A = 1 A=1 A = 1
B = 0 B=0 B = 0 The particular solution of the nonhomogeneous differential equation is
y p = cos x y_p=\cos x y p = cos x
Comments
Thank you so much