We remind that the Green function is a function G(x,s) such that y(x)=∫x0xG(x,s)f(s)ds.
We rewrite the equation as z=y′ , −z′−y=f(x). It can be rewritten as: {y′=zz′=−y−f(x)
It can be rewritten as: (10)(y′0z′0)=(10)(y0z0)(01−10)+(10)(00−f(x)0)
It is enough to solve the problem: A′=Aσ+F, where A=(y0z0), σ=(01−10) F=(00−f(x)0). The solution of equation A′=Aσ is A=Ceσt with matrix C. We suppose that C=C(t). We substitute and get: C′eσt+Ceσtσ=Ceσtσ+F. We get: C=∫Fe−σtdt+K with a constant matrix K=(k11k21k12k22). Thus, A=(∫Fe−σtdt+K)eσt. We notice that y=(10)(y0z0)(10) . Thus, y=(10)(∫Fe−σtdt+K)eσt(10). From the latter we can find the Green function.
Remind that eσt=1+σt+2!(σt)2+3!(σt)3+... Compute powers of matrix σ: σ2=σ=(−100−1)=−I. Thus, e−σt=I(1−2!(−t)2+4!(−t)4).−+...+σ(−t−3!(−t)3+5!(−t)5)+...=Icos(−t)+σsin(−t)
As a result, we get:y=(10)(∫Fe−σtdt+K)eσx(10)=(10)(∫(00−f(t)0)(cost−sintsintcost)dt+(k11k21k12k22))eσx(10)=(10)(∫f(t)sintdt+k11k21−∫f(t)costdt+k12k22)(cosxsinx−sinxcosx)(10)=(10)A(10)=(10)(a11a21a12a22)(10)=a11.
a11=cosx(∫f(t)sintdt+k11)+sinx(−∫f(t)costdt+k12)=k11cosx+k12sinx+∫f(t)(cosxsint−sinxcost)dt
As we can see, k11cosx+k12sinx is a solution of the homogenous problem y′′+y=0. Therefore, we set k11=k12=0 and receive that the Green function is: G(x,t)=cosxsint−sinxcost
Comments