Question #227031

Determine the Green function and express the solution as a definite integral

-(y''+y)=f(x), y'(0)=0, y(1)=0


1
Expert's answer
2021-08-19T13:04:22-0400

We remind that the Green function is a function G(x,s)G(x,s) such that y(x)=x0xG(x,s)f(s)dsy(x)=\int_{x_0}^xG(x,s)f(s)ds.

We rewrite the equation as z=yz=y' , zy=f(x)-z'-y=f(x). It can be rewritten as: {y=zz=yf(x)\left\{\right.\begin{matrix} y'=z \\ z'=-y-f(x) \end{matrix}

It can be rewritten as: (10)(yz00)=(10)(yz00)(0110)+(10)(0f(x)00)\left(\begin{matrix} 1&0 \end{matrix}\right)\left(\begin{matrix} y'&z'\\ 0&0 \end{matrix}\right)=\left(\begin{matrix} 1&0 \end{matrix}\right)\left(\begin{matrix} y&z\\ 0&0 \end{matrix}\right)\left(\begin{matrix} 0&-1\\ 1&0 \end{matrix}\right)+\left(\begin{matrix} 1&0 \end{matrix}\right)\left(\begin{matrix} 0&-f(x)\\ 0&0 \end{matrix}\right)

It is enough to solve the problem: A=Aσ+FA'=A\sigma+F, where A=(yz00)A=\left(\begin{matrix} y&z\\ 0&0 \end{matrix}\right), σ=(0110)\sigma=\left(\begin{matrix} 0&-1\\ 1&0 \end{matrix}\right) F=(0f(x)00)F=\left(\begin{matrix} 0&-f(x)\\ 0&0 \end{matrix}\right). The solution of equation A=AσA'=A\sigma is A=CeσtA=Ce^{\sigma t} with matrix CC. We suppose that C=C(t)C=C(t). We substitute and get: Ceσt+Ceσtσ=Ceσtσ+FC'e^{\sigma t}+Ce^{\sigma t}{\sigma}=Ce^{\sigma t}{\sigma}+F. We get: C=Feσtdt+KC=\int Fe^{-\sigma t}dt+K with a constant matrix K=(k11k12k21k22).K=\left(\begin{array}{cc}k_{11}&k_{12}\\k_{21}&k_{22}\end{array}\right). Thus, A=(Feσtdt+K)eσtA=(\int Fe^{-\sigma t}dt+K)e^{\sigma t}. We notice that y=(10)(yz00)(10)y=\left(\begin{matrix} 1&0 \end{matrix}\right)\left(\begin{matrix} y&z\\ 0&0 \end{matrix}\right)\left(\begin{matrix} 1\\ 0 \end{matrix}\right) . Thus, y=(10)(Feσtdt+K)eσt(10)y=\left(\begin{matrix} 1&0 \end{matrix}\right)(\int Fe^{-\sigma t}dt+K)e^{\sigma t}\left(\begin{matrix} 1\\ 0 \end{matrix}\right). From the latter we can find the Green function.

Remind that eσt=1+σt+(σt)22!+(σt)33!+...e^{\sigma t}=1+\sigma t+\frac{(\sigma t)^2}{2!}+\frac{(\sigma t)^3}{3!}+... Compute powers of matrix σ\sigma: σ2=σ=(1001)=I\sigma^2=\sigma=\left(\begin{matrix} -1&0\\ 0&-1 \end{matrix}\right)=-I. Thus, eσt=I(1(t)22!+(t)44!).+...+σ(t(t)33!+(t)55!)+...=Icos(t)+σsin(t)e^{-\sigma t}=I(1-\frac{(-t)^2}{2!}+\frac{(-t)^4}{4!}).-+...+\sigma(-t-\frac{(-t)^3}{3!}+\frac{(-t)^5}{5!})+...=Icos(\,-t)+\sigma\,sin(-\,t)

As a result, we get:y=(10)(Feσtdt+K)eσx(10)=(10)((0f(t)00)(costsintsintcost)dt+(k11k12k21k22))eσx(10)=(10)(f(t)sintdt+k11f(t)costdt+k12k21k22)(cosxsinxsinxcosx)(10)=(10)A(10)=(10)(a11a12a21a22)(10)=a11y=\left(\begin{matrix} 1&0 \end{matrix}\right)(\int Fe^{-\sigma t}dt+K)e^{\sigma x}\left(\begin{matrix} 1\\ 0 \end{matrix}\right)=\left(\begin{matrix} 1&0 \end{matrix}\right)(\int \left(\begin{matrix} 0&-f(t)\\ 0&0 \end{matrix}\right)\left(\begin{matrix} cos\,t&sin\,t\\ -sin\,t&cos\,t \end{matrix}\right)dt+\left(\begin{array}{cc}k_{11}&k_{12}\\k_{21}&k_{22}\end{array}\right))e^{\sigma x}\left(\begin{matrix} 1\\ 0 \end{matrix}\right)=\left(\begin{matrix} 1&0 \end{matrix}\right) \left(\begin{matrix} \int f(t)\,sin\,t \,dt+k_{11}&-\int f(t)\,cos\,t\,dt+k_{12}\\ k_{21}&k_{22}\end{matrix}\right)\left(\begin{matrix} cos\,x&-sin\,x\\ sin\,x&cos\,x \end{matrix}\right)\left(\begin{matrix} 1\\ 0 \end{matrix}\right)=\left(\begin{matrix} 1&0 \end{matrix}\right)A\left(\begin{matrix} 1\\ 0 \end{matrix}\right)=\left(\begin{matrix} 1&0 \end{matrix}\right)\left(\begin{matrix} a_{11}&a_{12}\\ a_{21}&a_{22} \end{matrix}\right)\left(\begin{matrix} 1\\ 0 \end{matrix}\right)=a_{11}.

a11=cosx(f(t)sintdt+k11)+sinx(f(t)costdt+k12)=k11cosx+k12sinx+f(t)(cosxsintsinxcost)dta_{11}= cos\,x(\int f(t)\,sin\,t \,dt+k_{11})+sin\,x(-\int f(t)\,cos\,t\,dt+k_{12})=k_{11} cos\,x+k_{12}sin\,x+\int f(t)(cos\,x\,sin\,t-sin\,xcos\,t) \,dt

As we can see, k11cosx+k12sinxk_{11} cos\,x+k_{12}sin\,x is a solution of the homogenous problem y+y=0y''+y=0. Therefore, we set k11=k12=0k_{11}=k_{12}=0 and receive that the Green function is: G(x,t)=cosxsintsinxcostG(x,t)=cos\,x\,sin\,t-sin\,xcos\,t


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS