Question #226267

Find the general solution of the differential equation y" + 16y = 2 sec(4t) tan(4t)

Select one:

O none of the given answers is true

y = ci cos(4t) + c2 sin(4t) + ,t cos(4t) - sin(4t) In | cos(4t) |


y = ci cos(4t) + c2 sin(4t) - t cos(4t) + sin(4t) In | cos(4t) |

y = ci cos(4t) + c2 sin (4t) -

7t sin(4t) - - cos(4t) In | sin(4t) |

y = ci cos(4t) + C2 sin(4t) + ,t sin(4t) + - cos(4t) In | sin(4t)|



1
Expert's answer
2021-08-17T10:36:50-0400

Corresponding homogeneous differential equation


y+16y=0y''+16y=0

Characteristic equation


r2+16=0r^2+16=0

r=±4ir=\pm4i

The general solution of the homogeneous differential equation is


y=C1cos(4t)+C2sin(4t)y=C_1\cos(4t)+C_2\sin(4t)

Use the variation of parameters


W(y1,y2)=y1y2y1y2=cos(4t)sin(4t)4sin(4t)4cos(4t)=4W(y_1, y_2)=\begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}=\begin{vmatrix} \cos(4t) & \sin(4t) \\ -4\sin(4t) & 4\cos(4t) \end{vmatrix}=4

Find the partial solution


yp=cos(4t)sin(4t)sec(4t)tan(4t)4dty_p=-\cos(4t)\int\dfrac{\sin(4t)\sec(4t)\tan(4t)}{4}dt

+sin(4x)cos(4x)sec(x)tan(x)4dx+\sin(4x)\int\dfrac{\cos(4x)\sec(x)\tan(x)}{4}dx

sin(4t)sec(4t)tan(4t)4dt=tan2(4t)4dt\int\dfrac{\sin(4t)\sec(4t)\tan(4t)}{4}dt=\int\dfrac{\tan^2(4t)}{4}dt

=sec2(4t)14dt=tan(4t)16t4C3=\int\dfrac{\sec^2(4t)-1}{4}dt=\dfrac{\tan(4t)}{16}-\dfrac{t}{4}-C_3



cos(4t)sec(4t)tan(4t)4dt=tan(4t)4dt\int\dfrac{\cos(4t)\sec(4t)\tan(4t)}{4}dt=\int\dfrac{\tan(4t)}{4}dt

=sin(4t)4cos(4t)dt=lncos(4t)16+C4=\int\dfrac{\sin(4t)}{4\cos(4t)}dt=-\dfrac{\ln|\cos(4t)|}{16}+C_4

yp=cos(4t)tan(4t)16+t4cos(4t)C3cos(4t)y_p=-\cos(4t)\dfrac{\tan(4t)}{16}+\dfrac{t}{4}\cos(4t)-C_3\cos(4t)

sin(4t)lncos(4t)16+C4sin(4t)-\sin(4t)\dfrac{\ln|\cos(4t)|}{16}+C_4\sin(4t)

The general solution of the given differential equation is


y=c1cos(4t)+c2sin(4t)y=c_1\cos(4t)+c_2\sin(4t)

sin(4t)16+t4cos(4t)sin(4t)lncos(4t)16-\dfrac{\sin(4t)}{16}+\dfrac{t}{4}\cos(4t)-\sin(4t)\dfrac{\ln|\cos(4t)|}{16}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS