4Uxx+5Uxy+Uyy+Ux+Uy=0or,4r+5s+t+p+q=0whereR=4,S=5,T=1.therefore, characteristic equation is Rλ2+Sλ+T=04λ2+5λ+1=0λ=−1/4,−1Then,the characteristics curve of given pde is the solution of these equationdxdy+λ1=0−−−−−−−−(1)anddxdy−λ2=0−−−−−−−−−(2)from (1),we getc1=y−(x/4)(=m)from (2),we getc1=y−x(=n)Now, find p,q,r,s,t and substitute in the given pde.p=Ux=4−1Um−Unq=Uy=Um+Unr=Uxx=161Umm+21Umn+Unns=4−1Umm−45Umn−Unnt=Umm+2Umn+Unnsubstitute in the given pde, we getUmm=3UmThis is required canonical form.
Comments