Question #226134
Reduce into canonical form
Uxx+Uxy+Uyy+Ux=0
1
Expert's answer
2021-08-17T07:01:23-0400

Δ=a122a11a22=(12)211=34<0\Delta = a_{12}^2 - {a_{11}}{a_{22}} = {(\frac{1}{2})^2} - 1 \cdot 1 = - \frac{3}{4} < 0 - we have an equation of elliptic type.

Characteristic equation:

dydx=a12+Δa11=12+32i1y=x2+32ix+C1\frac{{dy}}{{dx}} = \frac{{{a_{12}} + \sqrt \Delta }}{{{a_{11}}}} = \frac{{\frac{1}{2} + \frac{{\sqrt 3 }}{2}i}}{1} \Rightarrow y = \frac{x}{2} + \frac{{\sqrt 3 }}{2}ix + {C_1}

or

dydx=a12Δa11=1232i1y=x232ix+C2\frac{{dy}}{{dx}} = \frac{{{a_{12}} - \sqrt \Delta }}{{{a_{11}}}} = \frac{{\frac{1}{2} - \frac{{\sqrt 3 }}{2}i}}{1} \Rightarrow y = \frac{x}{2} - \frac{{\sqrt 3 }}{2}ix + {C_2}

Let

ξ(x,y)=C1+C22=12(yx232ix+yx2+32ix)=yx2\xi (x,y) = \frac{{{C_1} + {C_2}}}{2} = \frac{1}{2}\left( {y - \frac{x}{2} - \frac{{\sqrt 3 }}{2}ix + y - \frac{x}{2} + \frac{{\sqrt 3 }}{2}ix} \right) = y - \frac{x}{2}

η(x,y)=C2C12i=12i(yx2+32ixy+x2+32ix)=32x\eta \left( {x,y} \right) = \frac{{{C_2} - {C_1}}}{{2i}} = \frac{1}{{2i}}\left( {y - \frac{x}{2} + \frac{{\sqrt 3 }}{2}ix - y + \frac{x}{2} + \frac{{\sqrt 3 }}{2}ix} \right) = \frac{{\sqrt 3 }}{2}x

u(x,y)=v(ξ;η)u(x,y) = v\left( {\xi ;\,\eta } \right)

Then

ux=vξξx+vηηx=12vξ+32vη{u_x} = {v_\xi }{\xi _x} + {v_\eta }{\eta _x} = - \frac{1}{2}{v_\xi } + \frac{{\sqrt 3 }}{2}{v_\eta }

uy=vξξy+vηηy=vξ{u_y} = {v_\xi }{\xi _y} + {v_\eta }{\eta _y} = {v_\xi }

uxx=12(vξξξx+vξηηx)+32(vηξξx+vηηηx)=12(12vξξ+32vξη)+32(12vηξ+32vηη)=14vξξ32vξη+34vηη{u_{xx}} = - \frac{1}{2}\left( {{v_{\xi \xi }}{\xi _x} + {v_{\xi \eta }}{\eta _x}} \right) + \frac{{\sqrt 3 }}{2}\left( {{v_{\eta \xi }}{\xi _x} + {v_{\eta \eta }}{\eta _x}} \right) = - \frac{1}{2}\left( { - \frac{1}{2}{v_{\xi \xi }} + \frac{{\sqrt 3 }}{2}{v_{\xi \eta }}} \right) + \frac{{\sqrt 3 }}{2}\left( { - \frac{1}{2}{v_{\eta \xi }} + \frac{{\sqrt 3 }}{2}{v_{\eta \eta }}} \right) = \frac{1}{4}{v_{\xi \xi }} - \frac{{\sqrt 3 }}{2}{v_{\xi \eta }} + \frac{3}{4}{v_{\eta \eta }}

uyy=vξξξy+vξηηy=vξξ{u_{yy}} = {v_{\xi \xi }}{\xi _y} + {v_{\xi \eta }}{\eta _y} = {v_{\xi \xi }}

uyx=vξξξx+vξηηx=12vξξ+32vξη{u_{yx}} = {v_{\xi \xi }}{\xi _x} + {v_{\xi \eta }}{\eta _x} = - \frac{1}{2}{v_{\xi \xi }} + \frac{{\sqrt 3 }}{2}{v_{\xi \eta }}

Substitute the found values ​​into the original equation:

14vξξ32vξη+34vηη12vξξ+32vξη+vξξ12vξ+32vη=0\frac{1}{4}{v_{\xi \xi }} - \frac{{\sqrt 3 }}{2}{v_{\xi \eta }} + \frac{3}{4}{v_{\eta \eta }} - \frac{1}{2}{v_{\xi \xi }} + \frac{{\sqrt 3 }}{2}{v_{\xi \eta }} + {v_{\xi \xi }} - \frac{1}{2}{v_\xi } + \frac{{\sqrt 3 }}{2}{v_\eta } = 0

vξξ(1412+1)+34vηη+vξη(32+32)12vξ+32vη=0{v_{\xi \xi }}\left( {\frac{1}{4} - \frac{1}{2} + 1} \right) + \frac{3}{4}{v_{\eta \eta }} + {v_{\xi \eta }}\left( { - \frac{{\sqrt 3 }}{2} + \frac{{\sqrt 3 }}{2}} \right) - \frac{1}{2}{v_\xi } + \frac{{\sqrt 3 }}{2}{v_\eta } = 0

34vξξ+34vηη=12vξ32vη\frac{3}{4}{v_{\xi \xi }} + \frac{3}{4}{v_{\eta \eta }} = \frac{1}{2}{v_\xi } - \frac{{\sqrt 3 }}{2}{v_\eta }

vξξ+vηη=23vξ233vη{v_{\xi \xi }} + {v_{\eta \eta }} = \frac{2}{3}{v_\xi } - \frac{{2\sqrt 3 }}{3}{v_\eta }

Answer: vξξ+vηη=23vξ233vη{v_{\xi \xi }} + {v_{\eta \eta }} = \frac{2}{3}{v_\xi } - \frac{{2\sqrt 3 }}{3}{v_\eta } , where ξ(x,y)= yx2\xi (x,y) = \ y - \frac{x}{2}, η(x,y)=32x\eta \left( {x,y} \right) = \frac{{\sqrt 3 }}{2}x , u(x,y)=v(ξ;η)u(x,y) = v\left( {\xi ;\,\eta } \right)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS