Δ=a122−a11a22=(21)2−1⋅1=−43<0 - we have an equation of elliptic type.
Characteristic equation:
dxdy=a11a12+Δ=121+23i⇒y=2x+23ix+C1
or
dxdy=a11a12−Δ=121−23i⇒y=2x−23ix+C2
Let
ξ(x,y)=2C1+C2=21(y−2x−23ix+y−2x+23ix)=y−2x
η(x,y)=2iC2−C1=2i1(y−2x+23ix−y+2x+23ix)=23x
u(x,y)=v(ξ;η)
Then
ux=vξξx+vηηx=−21vξ+23vη
uy=vξξy+vηηy=vξ
uxx=−21(vξξξx+vξηηx)+23(vηξξx+vηηηx)=−21(−21vξξ+23vξη)+23(−21vηξ+23vηη)=41vξξ−23vξη+43vηη
uyy=vξξξy+vξηηy=vξξ
uyx=vξξξx+vξηηx=−21vξξ+23vξη
Substitute the found values into the original equation:
41vξξ−23vξη+43vηη−21vξξ+23vξη+vξξ−21vξ+23vη=0
vξξ(41−21+1)+43vηη+vξη(−23+23)−21vξ+23vη=0
43vξξ+43vηη=21vξ−23vη
vξξ+vηη=32vξ−323vη
Answer: vξξ+vηη=32vξ−323vη , where ξ(x,y)= y−2x, η(x,y)=23x , u(x,y)=v(ξ;η)
Comments