Question #226133
reduce into canonical form
Uxx-2sinxUxy-cos^2xUyy-cosxUy=0
1
Expert's answer
2021-08-16T14:03:30-0400

Δ=a122a11a22=(sinx)21(cos2x)=sin2x+cos2x=1>0\Delta = a_{12}^2 - {a_{11}}{a_{22}} = {( - \sin x)^2} - 1 \cdot \left( { - {{\cos }^2}x} \right) = {\sin ^2}x + {\cos ^2}x = 1 > 0 - we have an equation of hyperbolic type.

Characteristic equation:

dydx=a12+Δa11=sinx+11y=cosx+x+C1\frac{{dy}}{{dx}} = \frac{{{a_{12}} + \sqrt \Delta }}{{{a_{11}}}} = \frac{{ - \sin x + 1}}{1} \Rightarrow y = \cos x + x + {C_1}

or

dydx=a12Δa11=sinx11y=cosxx+C2\frac{{dy}}{{dx}} = \frac{{{a_{12}} - \sqrt \Delta }}{{{a_{11}}}} = \frac{{ - \sin x - 1}}{1} \Rightarrow y = \cos x - x + {C_2}

Let

ξ(x,y)=ycosxx,η(x,y)=ycosx+x,u(x,y)=v(ξ,η)\xi (x,y) = y - \cos x - x,\,\,\eta (x,y) = y - \cos x + x,\,\,u(x,y) = v(\xi ,\,\eta )

Then

ux=vξξx+vηηx=(sinx1)vξ+(sinx+1)vη{u_x} = {v_\xi }{\xi _x} + {v_\eta }{\eta _x} = (\sin x - 1){v_\xi } + (\sin x + 1){v_\eta }

uy=vξξy+vηηy=vξ+vη{u_y} = {v_\xi }{\xi _y} + {v_\eta }{\eta _y} = {v_\xi } + {v_\eta }

uxx=cosxvξ+(sinx1)(vξξξx+vξηηx)+cosxvη+(sinx+1)(vηξξx+vηηηx)==cosxvξ+(sinx1)((sinx1)vξξ+(sinx+1)vξη)+cosxvη+(sinx+1)((sinx1)vηξ+(sinx+1)vηη)==cosxvξ+(sinx1)2vξξ+2(sin2x1)vξη+cosxvη+(sinx+1)2vηη==(sinx1)2vξξ2cos2xvξη+(sinx+1)2vηη+cosxvξ+cosxvη{u_{xx}} = \cos x{v_\xi } + (\sin x - 1)\left( {{v_{\xi \xi }}{\xi _x} + {v_{\xi \eta }}{\eta _x}} \right) + \cos x{v_\eta } + (\sin x + 1)\left( {{v_{\eta \xi }}{\xi _x} + {v_{\eta \eta }}{\eta _x}} \right) = \\= \cos x{v_\xi } + (\sin x - 1)\left( {(\sin x - 1){v_{\xi \xi }} + (\sin x + 1){v_{\xi \eta }}} \right) + \cos x{v_\eta } + (\sin x + 1)\left( {(\sin x - 1){v_{\eta \xi }} + (\sin x + 1){v_{\eta \eta }}} \right) = \\= \cos x{v_\xi } + {(\sin x - 1)^2}{v_{\xi \xi }} + 2\left( {{{\sin }^2}x - 1} \right){v_{\xi \eta }} + \cos x{v_\eta } + {(\sin x + 1)^2}{v_{\eta \eta }} = \\ = {(\sin x - 1)^2}{v_{\xi \xi }} - 2{\cos ^2}x{v_{\xi \eta }} + {(\sin x + 1)^2}{v_{\eta \eta }} + \cos x{v_\xi } + \cos x{v_\eta }

uyy=vξξξy+vξηηy+vηξξy+vηηηy=vξξ+2vξη+vηη{u_{yy}} = {v_{\xi \xi }}{\xi _y} + {v_{\xi \eta }}{\eta _y} + {v_{\eta \xi }}{\xi _y} + {v_{\eta \eta }}{\eta _y} = {v_{\xi \xi }} + 2{v_{\xi \eta }} + {v_{\eta \eta }}

uyx=vξξξx+vξηηx+vηξξx+vηηηx=(sinx1)vξξ+(sinx+1)vξη+(sinx1)vηξ+(sinx+1)vηη==(sinx1)vξξ+2sinxvξη+(sinx+1)vηη{u_{yx}} = {v_{\xi \xi }}{\xi _x} + {v_{\xi \eta }}{\eta _x} + {v_{\eta \xi }}{\xi _x} + {v_{\eta \eta }}{\eta _x} = (\sin x - 1){v_{\xi \xi }} + (\sin x + 1){v_{\xi \eta }} + (\sin x - 1){v_{\eta \xi }} + (\sin x + 1){v_{\eta \eta }} = \\ = (\sin x - 1){v_{\xi \xi }} + 2\sin x{v_{\xi \eta }} + (\sin x + 1){v_{\eta \eta }}

Substitute the found values ​​into the original equation:

(sinx1)2vξξ2cos2xvξη+(sinx+1)2vηη+cosxvξ+cosxvη2sinx((sinx1)vξξ+2sinxvξη+(sinx+1)vηη)cos2x(vξξ+2vξη+vηη)cosx(vξ+vη)=0{(\sin x - 1)^2}{v_{\xi \xi }} - 2{\cos ^2}x{v_{\xi \eta }} + {(\sin x + 1)^2}{v_{\eta \eta }} + \cos x{v_\xi } + \cos x{v_\eta } -\\ - 2\sin x\left( {(\sin x - 1){v_{\xi \xi }} + 2\sin x{v_{\xi \eta }} + (\sin x + 1){v_{\eta \eta }}} \right) - \\- {\cos ^2}x\left( {{v_{\xi \xi }} + 2{v_{\xi \eta }} + {v_{\eta \eta }}} \right) - \cos x\left( {{v_\xi } + {v_\eta }} \right) = 0

vξξ(sin2x2sinx+12sin2x+2sinxcos2x)++vξη(2cos2x4sin2x2cos2x)++vηη(sin2x+2sinx+12sin2x2sinxcos2x)++vξ(cosxcosx)+vη(cosxcosx)=0{v_{\xi \xi }}\left( {{{\sin }^2}x - 2\sin x + 1 - 2{{\sin }^2}x + 2\sin x - {{\cos }^2}x} \right) + \\ + {v_{\xi \eta }}\left( { - 2{{\cos }^2}x - 4{{\sin }^2}x - 2{{\cos }^2}x} \right) + \\+ {v_{\eta \eta }}\left( {{{\sin }^2}x + 2\sin x + 1 - 2{{\sin }^2}x - 2\sin x - {{\cos }^2}x} \right) + \\ + {v_\xi }\left( {\cos x - \cos x} \right) + {v_\eta }\left( {\cos x - \cos x} \right) = 0

(sin2xcos2x+1)vξξ+(4cos2x4sin2x)vξη+(sin2xcos2x+1)vηη=0\left( { - {{\sin }^2}x - {{\cos }^2}x + 1} \right){v_{\xi \xi }} + \left( { - 4{{\cos }^2}x - 4{{\sin }^2}x} \right){v_{\xi \eta }} + \left( { - {{\sin }^2}x - {{\cos }^2}x + 1} \right){v_{\eta \eta }} = 0

(1+1)vξξ4vξη+(1+1)vηη=0vξη=0\left( { - 1 + 1} \right){v_{\xi \xi }} - 4{v_{\xi \eta }} + \left( { - 1 + 1} \right){v_{\eta \eta }} = 0 \Rightarrow {v_{\xi \eta }} = 0

Answer: vξη=0{v_{\xi \eta }} = 0 , where ξ(x,y)=ycosxx,η(x,y)=ycosx+x,u(x,y)=v(ξ,η)\xi (x,y) = y - \cos x - x,\,\,\eta (x,y) = y - \cos x + x,\,\,u(x,y) = v(\xi ,\,\eta )



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS