Δ=a122−a11a22=(−sinx)2−1⋅(−cos2x)=sin2x+cos2x=1>0 - we have an equation of hyperbolic type.
Characteristic equation:
dxdy=a11a12+Δ=1−sinx+1⇒y=cosx+x+C1
or
dxdy=a11a12−Δ=1−sinx−1⇒y=cosx−x+C2
Let
ξ(x,y)=y−cosx−x,η(x,y)=y−cosx+x,u(x,y)=v(ξ,η)
Then
ux=vξξx+vηηx=(sinx−1)vξ+(sinx+1)vη
uy=vξξy+vηηy=vξ+vη
uxx=cosxvξ+(sinx−1)(vξξξx+vξηηx)+cosxvη+(sinx+1)(vηξξx+vηηηx)==cosxvξ+(sinx−1)((sinx−1)vξξ+(sinx+1)vξη)+cosxvη+(sinx+1)((sinx−1)vηξ+(sinx+1)vηη)==cosxvξ+(sinx−1)2vξξ+2(sin2x−1)vξη+cosxvη+(sinx+1)2vηη==(sinx−1)2vξξ−2cos2xvξη+(sinx+1)2vηη+cosxvξ+cosxvη
uyy=vξξξy+vξηηy+vηξξy+vηηηy=vξξ+2vξη+vηη
uyx=vξξξx+vξηηx+vηξξx+vηηηx=(sinx−1)vξξ+(sinx+1)vξη+(sinx−1)vηξ+(sinx+1)vηη==(sinx−1)vξξ+2sinxvξη+(sinx+1)vηη
Substitute the found values into the original equation:
(sinx−1)2vξξ−2cos2xvξη+(sinx+1)2vηη+cosxvξ+cosxvη−−2sinx((sinx−1)vξξ+2sinxvξη+(sinx+1)vηη)−−cos2x(vξξ+2vξη+vηη)−cosx(vξ+vη)=0
vξξ(sin2x−2sinx+1−2sin2x+2sinx−cos2x)++vξη(−2cos2x−4sin2x−2cos2x)++vηη(sin2x+2sinx+1−2sin2x−2sinx−cos2x)++vξ(cosx−cosx)+vη(cosx−cosx)=0
(−sin2x−cos2x+1)vξξ+(−4cos2x−4sin2x)vξη+(−sin2x−cos2x+1)vηη=0
(−1+1)vξξ−4vξη+(−1+1)vηη=0⇒vξη=0
Answer: vξη=0 , where ξ(x,y)=y−cosx−x,η(x,y)=y−cosx+x,u(x,y)=v(ξ,η)
Comments