Solution
a=y
b=x+y
c=x
Hence;
b2−4ac=x2−2xy+y2=(x−y)2>0
So the PDE is hyperbolic and we solve as follows;
Take ;
arx2+brxry+cry2=0
yrx2+(x+y)rxry+xry2=0
Factor;
rx(yrx+xry)+ry(yrx+xry) =0
(yrx+xry)(rx+ry)=0
Since s also satisfies the same equation ,we take;
yrx+xry=0
Which gives ;
r=x2−y2
sx+sy=0
Which gives;
s=x−y
Calculate the first derivatives;
Zx=2xZr+Zs
Zy=−2yZr−Zs
Calculating the second derivatives;
Zxx=4x2Zrr+4xZrs+Zss+2Zr
Zxy=−4xyZrr−2xZrs−2yZrs−Zss
Zyy=4y2Zrr+4yZrs+Zss−2Zr
Substitute to the given questions to obtain;
4x2yZrr+4xyZrs+yZss+2yZr−4x2yZrr−2x2Zrs−2yxZrs−xZss−4xy2Zrr−2xyZrs−2y2Zrs−yZss+4y2xZrr+4yxZrs+xZss−2xZr
Simplify to obtain;
2xZr−2yZr+2x2Zrs+2y2Zrs−4xyZrs
Divide by 2 and factorise to obtaining;
(x−y)2Zrs+(x−y)Zr=0
But x-y=s
By substitution;
s2Zrs+sZr=0
Rewrite as;
Zrs+s1Zr=0
Comments