Question #226130
yZxx+(x+y)Zxy+xZyy
1
Expert's answer
2021-08-17T10:16:36-0400

Solution

a=y

b=x+y

c=x

Hence;

b24ac=x22xy+y2=(xy)2>0b^2-4ac=x^2-2xy+y^2=(x-y)^2>0

So the PDE is hyperbolic and we solve as follows;

Take ;

arx2+brxry+cry2=0ar_x^2+br_xr_y+cr_y^2=0

yrx2+(x+y)rxry+xry2=0yr_x^2+(x+y)r_xr_y+xr_y^2=0

Factor;

rx(yrx+xry)+ry(yrx+xry)r_x(yr_x+xr_y)+r_y(yr_x+xr_y) =0

(yrx+xry)(rx+ry)=0(yr_x+xr_y)(r_x+r_y)=0

Since s also satisfies the same equation ,we take;

yrx+xry=0yr_x+xr_y=0

Which gives ;

r=x2y2r=x^2-y^2

sx+sy=0s_x+s_y=0

Which gives;

s=xys=x-y

Calculate the first derivatives;

Zx=2xZr+ZsZ_x=2xZ_r+Z_s

Zy=2yZrZsZ_y=-2yZ_r-Z_s

Calculating the second derivatives;

Zxx=4x2Zrr+4xZrs+Zss+2ZrZ_{xx}=4x^2Z_{rr}+4xZ_{rs}+Z_{ss}+2Z_r

Zxy=4xyZrr2xZrs2yZrsZssZ_{xy}=-4xyZ_{rr}-2xZ_{rs}-2yZ_{rs}-Z_{ss}

Zyy=4y2Zrr+4yZrs+Zss2ZrZ_{yy}=4y^2Z_{rr}+4yZ_{rs}+Z_{ss}-2Z_r

Substitute to the given questions to obtain;

4x2yZrr+4xyZrs+yZss+2yZr4x2yZrr2x2Zrs2yxZrsxZss4xy2Zrr2xyZrs2y2ZrsyZss+4y2xZrr+4yxZrs+xZss2xZr4x^2yZ_{rr}+4xyZ_{rs}+yZ_{ss}+2yZ_r-4x^2yZ_{rr}-2x^2Z_{rs}-2yxZ_{rs}-xZ_{ss}-4xy^2Z_{rr}-2xyZ_{rs}-2y^2Z_{rs}-yZ_{ss}+4y^2xZ_{rr}+4yxZ_{rs}+xZ_{ss}-2xZ_r

Simplify to obtain;

2xZr2yZr+2x2Zrs+2y2Zrs4xyZrs2xZ_r-2yZ_r+2x^2Z_{rs}+2y^2Z_{rs}-4xyZ_{rs}

Divide by 2 and factorise to obtaining;

(xy)2Zrs+(xy)Zr=0(x-y)^2Z_{rs}+(x-y)Z_r=0

But x-y=s

By substitution;

s2Zrs+sZr=0s^2Z_{rs}+sZ_r=0

Rewrite as;

Zrs+1sZr=0Z_{rs}+\frac1sZ_r=0

























Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS