Solution;
We reduce the equation into conical form;
From the equation;
a=8
b=-8
c=2
Hence;
b2−4ac = (-8)2-(4×8×2)=0
Hence the equation is parabolic.
By;
2arx+bry=0
Gives;
8rx−4ry=0
Solving it obtains;
r=2x+4y and s=y
The first derivatives will be ;
Ux=Urrx+Ussx
Ux=2Ur
Uy=Urry+Ussy
Uy=4Ur
The second derivatives will be as follows;
Uxx=Urrrx2+2Ursrxsx+Usssx2+Urrxx+Ussx
Uxx=4Urr
Uxy=Urrrxry+Urs(rxsy+rysx)+Usssysx+Urrxy+Ussxy
Uxy=8Urr+2Urs
Uyy=Urrry2+2Ursrysy+Usssy2+Urryy+Ussyy
Uyy=16Urr+8Urs+Uss
Substitute into the given equation;
32Urr−64Urr−16Urs+32Urr+16Urs+2Uss+34Ur−52Ur=0
Simplifying;
2Uss−18Ur=0
Which is a heat equation;
uss=9ur
Comments