Question #226128
8Uxx-8Uxy+2Uyy+17Ux-13Uy=0
1
Expert's answer
2021-08-17T10:03:05-0400

Solution;

We reduce the equation into conical form;

From the equation;

a=8

b=-8

c=2

Hence;

b24acb^2-4ac = (-8)2-(4×8×2)=0

Hence the equation is parabolic.

By;

2arx+bry=02ar_x+br_y=0

Gives;

8rx4ry=08r_x-4r_y=0

Solving it obtains;

r=2x+4yr=2x+4y and s=ys=y

The first derivatives will be ;

Ux=Urrx+UssxU_x=U_rr_x+U_ss_x

Ux=2UrU_x=2Ur

Uy=Urry+UssyU_y=U_rr_y+U_ss_y

Uy=4UrU_y=4U_r

The second derivatives will be as follows;

Uxx=Urrrx2+2Ursrxsx+Usssx2+Urrxx+UssxU_{xx}=U_{rr}r_x^2+2U_{rs}r_xs_x+U_{ss}s_x^2+U_rr_{xx}+U_ss_{x}

Uxx=4UrrU_{xx}=4U_{rr}

Uxy=Urrrxry+Urs(rxsy+rysx)+Usssysx+Urrxy+UssxyU_{xy}=U_{rr}r_xr_y+U_{rs}(r_xs_y+r_ys_x)+U_{ss}s_ys_x+U_rr_{xy}+U_ss_{xy}

Uxy=8Urr+2UrsU_{xy}=8U_{rr}+2U_{rs}

Uyy=Urrry2+2Ursrysy+Usssy2+Urryy+UssyyU_{yy}=U_{rr}r_y^2+2U_{rs}r_ys_y+U_{ss}s_y^2+U_rr_{yy}+U_ss_{yy}

Uyy=16Urr+8Urs+UssU_{yy}=16U_{rr}+8U_{rs}+U_{ss}

Substitute into the given equation;

32Urr64Urr16Urs+32Urr+16Urs+2Uss+34Ur52Ur=032U_{rr}-64U_{rr}-16U_{rs}+32U_{rr}+16U_{rs}+2U_{ss}+34U_r-52U_r=0

Simplifying;

2Uss18Ur=02U_{ss}-18U_r=0

Which is a heat equation;

uss=9uru_{ss}=9u_r






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS