According to the Fourier method, the solution to the equation has the form:
u(x,t)=n=1∑∞(Ancoslπnct+Bnsinlπnct)sinlπnx=n=1∑∞(Ancosππnct+Bnsinππnct)sinππnx=n=1∑∞(Ancoscnt+Bnsincnt)sinnx
Find the coefficients
An=l20∫lφ(x)sinlπnxdx=π20∫π0⋅sinnxdx=0
Bn=πnc20∫lψ(x)sinlπnxdx=πnc20∫π(sin3x+sin25x)sinnxdx=πnc20∫π(sin3xsinnx+sin25xsinnx)dx==πnc10∫π(cos(3−n)x−cos(3+n)x+cos(25−n)x−cos(25+n)x)dx==πnc1(3−n1sin(3−n)x∣0π−3+n1sin(3+n)x∣0π+25−n1sin(25−n)x∣0π−25+n1sin(25+n)x∣0π)==πnc1(0−0+5−2n2sin(25−n)π−5+2n2sin(25+n)π)=πnc1(5−2n2sin(25−n)π−5+2n2sin(25+n)π)
if n=3
If n=3 then
B3=3πc20∫π(sin23x+sin25xsin3x)dx=3πc10∫π(1−cos6x+cos(−2x)−cos211x)dx==3πc1(x∣0π−61sin6x∣0π−2sin2x∣∣0π−112sin211x∣∣0π)==3πc1(π−0−2+112)=3c1−33πc20
Then
u(x,t)=n=1∑2πnc1(5−2n2sin(25−n)π−5+2n2sin(25+n)π)sincntsinnx+(3c1−33πc20)sin3ctsin3x+n=4∑∞πnc1(5−2n2sin(25−n)π−5+2n2sin(25+n)π)sincntsinnx
Answer: u(x,t)=n=1∑2πnc1(5−2n2sin(25−n)π−5+2n2sin(25+n)π)sincntsinnx+(3c1−33πc20)sin3ctsin3x+n=4∑∞πnc1(5−2n2sin(25−n)π−5+2n2sin(25+n)π)sincntsinnx
Comments