According to the Fourier method, the solution to the equation has the form:
u ( x , t ) = ∑ n = 1 ∞ ( A n cos π n l c t + B n sin π n l c t ) sin π n l x = ∑ n = 1 ∞ ( A n cos π n π c t + B n sin π n π c t ) sin π n π x = ∑ n = 1 ∞ ( A n cos c n t + B n sin c n t ) sin n x u(x,t) = \sum\limits_{n = 1}^\infty {\left( {{A_n}\cos \frac{{\pi n}}{l}ct + {B_n}\sin \frac{{\pi n}}{l}ct} \right)} \sin \frac{{\pi n}}{l}x = \sum\limits_{n = 1}^\infty {\left( {{A_n}\cos \frac{{\pi n}}{\pi }ct + {B_n}\sin \frac{{\pi n}}{\pi }ct} \right)} \sin \frac{{\pi n}}{\pi }x = \sum\limits_{n = 1}^\infty {\left( {{A_n}\cos cnt + {B_n}\sin cnt} \right)} \sin nx u ( x , t ) = n = 1 ∑ ∞ ( A n cos l πn c t + B n sin l πn c t ) sin l πn x = n = 1 ∑ ∞ ( A n cos π πn c t + B n sin π πn c t ) sin π πn x = n = 1 ∑ ∞ ( A n cos c n t + B n sin c n t ) sin n x
Find the coefficients
A n = 2 l ∫ 0 l φ ( x ) sin π n x l d x = 2 π ∫ 0 π 0 ⋅ sin n x d x = 0 {A_n} = \frac{2}{l}\int\limits_0^l {\varphi (x)} \sin \frac{{\pi nx}}{l}dx = \frac{2}{\pi }\int\limits_0^\pi {0 \cdot } \sin nxdx = 0 A n = l 2 0 ∫ l φ ( x ) sin l πn x d x = π 2 0 ∫ π 0 ⋅ sin n x d x = 0
B n = 2 π n c ∫ 0 l ψ ( x ) sin π n x l d x = 2 π n c ∫ 0 π ( sin 3 x + sin 5 x 2 ) sin n x d x = 2 π n c ∫ 0 π ( sin 3 x sin n x + sin 5 x 2 sin n x ) d x = = 1 π n c ∫ 0 π ( cos ( 3 − n ) x − cos ( 3 + n ) x + cos ( 5 2 − n ) x − cos ( 5 2 + n ) x ) d x = = 1 π n c ( 1 3 − n sin ( 3 − n ) x ∣ 0 π − 1 3 + n sin ( 3 + n ) x ∣ 0 π + 1 5 2 − n sin ( 5 2 − n ) x ∣ 0 π − 1 5 2 + n sin ( 5 2 + n ) x ∣ 0 π ) = = 1 π n c ( 0 − 0 + 2 5 − 2 n sin ( 5 2 − n ) π − 2 5 + 2 n sin ( 5 2 + n ) π ) = 1 π n c ( 2 5 − 2 n sin ( 5 2 − n ) π − 2 5 + 2 n sin ( 5 2 + n ) π ) {B_n} = \frac{2}{{\pi nc}}\int\limits_0^l {\psi (x)\sin \frac{{\pi nx}}{l}} dx = \frac{2}{{\pi nc}}\int\limits_0^\pi {(\sin 3x + \sin \frac{{5x}}{2})\sin nxdx} = \frac{2}{{\pi nc}}\int\limits_0^\pi {(\sin 3x\sin nx + \sin \frac{{5x}}{2}\sin nx)dx} = \\= \frac{1}{{\pi nc}}\int\limits_0^\pi {\left( {\cos (3 - n)x - \cos (3 + n)x + \cos \left( {\frac{5}{2} - n} \right)x - \cos \left( {\frac{5}{2} + n} \right)x} \right)} dx = \\= \frac{1}{{\pi nc}}\left( {\frac{1}{{3 - n}}\sin (3 - n)\left. x \right|_0^\pi - \frac{1}{{3 + n}}\sin (3 + n)\left. x \right|_0^\pi + \frac{1}{{\frac{5}{2} - n}}\sin \left( {\frac{5}{2} - n} \right)\left. x \right|_0^\pi - \frac{1}{{\frac{5}{2} + n}}\sin \left( {\frac{5}{2} + n} \right)\left. x \right|_0^\pi } \right) = \\= \frac{1}{{\pi nc}}\left( {0 - 0 + \frac{2}{{5 - 2n}}\sin \left( {\frac{5}{2} - n} \right)\pi - \frac{2}{{5 + 2n}}\sin \left( {\frac{5}{2} + n} \right)\pi } \right)=\\\frac{1}{{\pi nc}}\left( {\frac{2}{{5 - 2n}}\sin \left( {\frac{5}{2} - n} \right)\pi - \frac{2}{{5 + 2n}}\sin \left( {\frac{5}{2} + n} \right)\pi } \right) B n = πn c 2 0 ∫ l ψ ( x ) sin l πn x d x = πn c 2 0 ∫ π ( sin 3 x + sin 2 5 x ) sin n x d x = πn c 2 0 ∫ π ( sin 3 x sin n x + sin 2 5 x sin n x ) d x = = πn c 1 0 ∫ π ( cos ( 3 − n ) x − cos ( 3 + n ) x + cos ( 2 5 − n ) x − cos ( 2 5 + n ) x ) d x = = πn c 1 ( 3 − n 1 sin ( 3 − n ) x ∣ 0 π − 3 + n 1 sin ( 3 + n ) x ∣ 0 π + 2 5 − n 1 sin ( 2 5 − n ) x ∣ 0 π − 2 5 + n 1 sin ( 2 5 + n ) x ∣ 0 π ) = = πn c 1 ( 0 − 0 + 5 − 2 n 2 sin ( 2 5 − n ) π − 5 + 2 n 2 sin ( 2 5 + n ) π ) = πn c 1 ( 5 − 2 n 2 sin ( 2 5 − n ) π − 5 + 2 n 2 sin ( 2 5 + n ) π )
if n ≠ 3 n \ne 3 n = 3
If n = 3 n=3 n = 3 then
B 3 = 2 3 π c ∫ 0 π ( sin 2 3 x + sin 5 x 2 sin 3 x ) d x = 1 3 π c ∫ 0 π ( 1 − cos 6 x + cos ( − x 2 ) − cos 11 x 2 ) d x = = 1 3 π c ( x ∣ 0 π − 1 6 sin 6 x ∣ 0 π − 2 sin x 2 ∣ 0 π − 2 11 sin 11 x 2 ∣ 0 π ) = = 1 3 π c ( π − 0 − 2 + 2 11 ) = 1 3 c − 20 33 π c {B_3} = \frac{2}{{3\pi c}}\int\limits_0^\pi {({{\sin }^2}3x + \sin \frac{{5x}}{2}\sin 3x)dx} = \frac{1}{{3\pi c}}\int\limits_0^\pi {\left( {1 - \cos 6x + \cos \left( { - \frac{x}{2}} \right) - \cos \frac{{11x}}{2}} \right)} dx =\\ = \frac{1}{{3\pi c}}\left( {\left. x \right|_0^\pi - \frac{1}{6}\sin 6\left. x \right|_0^\pi - 2\sin \left. {\frac{x}{2}} \right|_0^\pi - \frac{2}{{11}}\sin \left. {\frac{{11x}}{2}} \right|_0^\pi } \right) = \\= \frac{1}{{3\pi c}}\left( {\pi - 0 - 2 + \frac{2}{{11}}} \right) = \frac{1}{{3c}} - \frac{{20}}{{33\pi c}} B 3 = 3 π c 2 0 ∫ π ( sin 2 3 x + sin 2 5 x sin 3 x ) d x = 3 π c 1 0 ∫ π ( 1 − cos 6 x + cos ( − 2 x ) − cos 2 11 x ) d x = = 3 π c 1 ( x ∣ 0 π − 6 1 sin 6 x ∣ 0 π − 2 sin 2 x ∣ ∣ 0 π − 11 2 sin 2 11 x ∣ ∣ 0 π ) = = 3 π c 1 ( π − 0 − 2 + 11 2 ) = 3 c 1 − 33 π c 20
Then
u ( x , t ) = ∑ n = 1 2 1 π n c ( 2 5 − 2 n sin ( 5 2 − n ) π − 2 5 + 2 n sin ( 5 2 + n ) π ) sin c n t sin n x + ( 1 3 c − 20 33 π c ) sin 3 c t sin 3 x + ∑ n = 4 ∞ 1 π n c ( 2 5 − 2 n sin ( 5 2 − n ) π − 2 5 + 2 n sin ( 5 2 + n ) π ) sin c n t sin n x u(x,t) = \sum\limits_{n = 1}^2 {\frac{1}{{\pi nc}}\left( {\frac{2}{{5 - 2n}}\sin \left( {\frac{5}{2} - n} \right)\pi - \frac{2}{{5 + 2n}}\sin \left( {\frac{5}{2} + n} \right)\pi } \right)\sin cnt\sin nx + } \left( {\frac{1}{{3c}} - \frac{{20}}{{33\pi c}}} \right)\sin 3ct\sin 3x + \sum\limits_{n = 4}^\infty {\frac{1}{{\pi nc}}\left( {\frac{2}{{5 - 2n}}\sin \left( {\frac{5}{2} - n} \right)\pi - \frac{2}{{5 + 2n}}\sin \left( {\frac{5}{2} + n} \right)\pi } \right)\sin cnt\sin nx} u ( x , t ) = n = 1 ∑ 2 πn c 1 ( 5 − 2 n 2 sin ( 2 5 − n ) π − 5 + 2 n 2 sin ( 2 5 + n ) π ) sin c n t sin n x + ( 3 c 1 − 33 π c 20 ) sin 3 c t sin 3 x + n = 4 ∑ ∞ πn c 1 ( 5 − 2 n 2 sin ( 2 5 − n ) π − 5 + 2 n 2 sin ( 2 5 + n ) π ) sin c n t sin n x
Answer: u ( x , t ) = ∑ n = 1 2 1 π n c ( 2 5 − 2 n sin ( 5 2 − n ) π − 2 5 + 2 n sin ( 5 2 + n ) π ) sin c n t sin n x + ( 1 3 c − 20 33 π c ) sin 3 c t sin 3 x + ∑ n = 4 ∞ 1 π n c ( 2 5 − 2 n sin ( 5 2 − n ) π − 2 5 + 2 n sin ( 5 2 + n ) π ) sin c n t sin n x u(x,t) = \sum\limits_{n = 1}^2 {\frac{1}{{\pi nc}}\left( {\frac{2}{{5 - 2n}}\sin \left( {\frac{5}{2} - n} \right)\pi - \frac{2}{{5 + 2n}}\sin \left( {\frac{5}{2} + n} \right)\pi } \right)\sin cnt\sin nx + } \left( {\frac{1}{{3c}} - \frac{{20}}{{33\pi c}}} \right)\sin 3ct\sin 3x + \sum\limits_{n = 4}^\infty {\frac{1}{{\pi nc}}\left( {\frac{2}{{5 - 2n}}\sin \left( {\frac{5}{2} - n} \right)\pi - \frac{2}{{5 + 2n}}\sin \left( {\frac{5}{2} + n} \right)\pi } \right)\sin cnt\sin nx} u ( x , t ) = n = 1 ∑ 2 πn c 1 ( 5 − 2 n 2 sin ( 2 5 − n ) π − 5 + 2 n 2 sin ( 2 5 + n ) π ) sin c n t sin n x + ( 3 c 1 − 33 π c 20 ) sin 3 c t sin 3 x + n = 4 ∑ ∞ πn c 1 ( 5 − 2 n 2 sin ( 2 5 − n ) π − 5 + 2 n 2 sin ( 2 5 + n ) π ) sin c n t sin n x
Comments