According to the Fourier method, the solution to the equation has the form:
u ( x , t ) = ∑ n = 1 ∞ ( A n cos π n l c t + B n sin π n l c t ) sin π n l x = ∑ n = 1 ∞ ( A n cos π n π c t + B n sin π n π c t ) sin π n π x = ∑ n = 1 ∞ ( A n cos c n t + B n sin c n t ) sin n x u(x,t) = \sum\limits_{n = 1}^\infty {\left( {{A_n}\cos \frac{{\pi n}}{l}ct + {B_n}\sin \frac{{\pi n}}{l}ct} \right)} \sin \frac{{\pi n}}{l}x = \sum\limits_{n = 1}^\infty {\left( {{A_n}\cos \frac{{\pi n}}{\pi }ct + {B_n}\sin \frac{{\pi n}}{\pi }ct} \right)} \sin \frac{{\pi n}}{\pi }x = \sum\limits_{n = 1}^\infty {\left( {{A_n}\cos cnt + {B_n}\sin cnt} \right)} \sin nx u ( x , t ) = n = 1 ∑ ∞ ( A n cos l πn c t + B n sin l πn c t ) sin l πn x = n = 1 ∑ ∞ ( A n cos π πn c t + B n sin π πn c t ) sin π πn x = n = 1 ∑ ∞ ( A n cos c n t + B n sin c n t ) sin n x
Find the coefficients
A n = 2 l ∫ 0 l φ ( x ) sin π n x l d x = 2 π ∫ 0 π x 2 ( x − π ) sin n x d x = 2 π ∫ 0 π ( x 3 − π x 2 ) sin n x d x = ∣ u = x 3 − π x 2 d v = sin n x d x d u = ( 3 x 2 − 2 π x ) d x v = − 1 n cos n x ∣ = = 2 π ( − x 3 − π x 2 n cos n x ∣ 0 π + 1 n ∫ 0 π ( 3 x 2 − 2 π x ) cos n x d x ) = ∣ u = 3 x 2 − 2 π x d v = cos n x d x d u = ( 6 x − 2 π ) d x v = 1 n sin n x ∣ = = 2 π ( 0 + 1 n ( 3 x 2 − 2 π x n sin n x ∣ 0 π − 1 n ∫ 0 π ( 6 x − 2 π ) sin n x d x ) ) = ∣ u = 6 x − 2 π d v = sin n x d x d u = 6 d x v = − 1 n cos n x ∣ = = 2 π ( 1 n ( 0 − 1 n ( − 6 x − 2 π n cos n x ∣ 0 π + 1 n ∫ 0 π 6 cos n x d x ) ) ) = 2 π ( 1 n ( − 1 n ( − 6 π − 2 π n cos π n + 0 − 2 π n cos 0 + 6 n 2 sin n x ∣ 0 π ) ) ) = = − 2 π n 2 ( − 4 π n ( − 1 ) n − 2 π n + 0 ) = 8 n 3 ( − 1 ) n + 4 n 3 {A_n} = \frac{2}{l}\int\limits_0^l {\varphi (x)} \sin \frac{{\pi nx}}{l}dx = \frac{2}{\pi }\int\limits_0^\pi {{x^2}\left( {x - \pi } \right)} \sin nxdx = \frac{2}{\pi }\int\limits_0^\pi {\left( {{x^3} - \pi {x^2}} \right)} \sin nxdx = \left| {\begin{matrix}
{u = {x^3} - \pi {x^2}}&{dv = \sin nxdx}\\
{du = (3{x^2} - 2\pi x)dx}&{v = - \frac{1}{n}\cos nx}
\end{matrix}} \right| = \\= \frac{2}{\pi }\left( { - \frac{{{x^3} - \pi {x^2}}}{n}\cos n\left. x \right|_0^\pi + \frac{1}{n}\int\limits_0^\pi {(3{x^2} - 2\pi x)\cos nxdx} } \right) = \left| {\begin{matrix}
{u = 3{x^2} - 2\pi x}&{dv = \cos nxdx}\\
{du = (6x - 2\pi )dx}&{v = \frac{1}{n}\sin nx}
\end{matrix}} \right| = \\ = \frac{2}{\pi }\left( {0 + \frac{1}{n}\left( {\frac{{3{x^2} - 2\pi x}}{n}\sin n\left. x \right|_0^\pi - \frac{1}{n}\int\limits_0^\pi {(6x - 2\pi )\sin nxdx} } \right)} \right) = \left| {\begin{matrix}
{u = 6x - 2\pi }&{dv = \sin nxdx}\\
{du = 6dx}&{v = - \frac{1}{n}\cos nx}
\end{matrix}} \right| =\\ = \frac{2}{\pi }\left( {\frac{1}{n}\left( {0 - \frac{1}{n}\left( { - \frac{{6x - 2\pi }}{n}\cos n\left. x \right|_0^\pi + \frac{1}{n}\int\limits_0^\pi {6\cos nxdx} } \right)} \right)} \right) = \frac{2}{\pi }\left( {\frac{1}{n}\left( { - \frac{1}{n}\left( { - \frac{{6\pi - 2\pi }}{n}\cos \pi n + \frac{{0 - 2\pi }}{n}\cos 0 + \frac{6}{{{n^2}}}\sin n\left. x \right|_0^\pi } \right)} \right)} \right) =\\ = - \frac{2}{{\pi {n^2}}}\left( { - \frac{{4\pi }}{n}{{( - 1)}^n} - \frac{{2\pi }}{n} + 0} \right) = \frac{8}{{{n^3}}}{( - 1)^n} + \frac{4}{{{n^3}}} A n = l 2 0 ∫ l φ ( x ) sin l πn x d x = π 2 0 ∫ π x 2 ( x − π ) sin n x d x = π 2 0 ∫ π ( x 3 − π x 2 ) sin n x d x = ∣ ∣ u = x 3 − π x 2 d u = ( 3 x 2 − 2 π x ) d x d v = sin n x d x v = − n 1 cos n x ∣ ∣ = = π 2 ( − n x 3 − π x 2 cos n x ∣ 0 π + n 1 0 ∫ π ( 3 x 2 − 2 π x ) cos n x d x ) = ∣ ∣ u = 3 x 2 − 2 π x d u = ( 6 x − 2 π ) d x d v = cos n x d x v = n 1 sin n x ∣ ∣ = = π 2 ( 0 + n 1 ( n 3 x 2 − 2 π x sin n x ∣ 0 π − n 1 0 ∫ π ( 6 x − 2 π ) sin n x d x ) ) = ∣ ∣ u = 6 x − 2 π d u = 6 d x d v = sin n x d x v = − n 1 cos n x ∣ ∣ = = π 2 ( n 1 ( 0 − n 1 ( − n 6 x − 2 π cos n x ∣ 0 π + n 1 0 ∫ π 6 cos n x d x ) ) ) = π 2 ( n 1 ( − n 1 ( − n 6 π − 2 π cos πn + n 0 − 2 π cos 0 + n 2 6 sin n x ∣ 0 π ) ) ) = = − π n 2 2 ( − n 4 π ( − 1 ) n − n 2 π + 0 ) = n 3 8 ( − 1 ) n + n 3 4
B n = 2 π n c ∫ 0 l ψ ( x ) sin π n x l d x = 2 π n c ∫ 0 π sin 3 x sin n x d x = 1 π n c ∫ 0 π ( cos ( 3 − n ) x + cos ( 3 + n ) x ) d x = 0 {B_n} = \frac{2}{{\pi nc}}\int\limits_0^l {\psi (x)\sin \frac{{\pi nx}}{l}} dx = \frac{2}{{\pi nc}}\int\limits_0^\pi {\sin 3x\sin nxdx} = \frac{1}{{\pi nc}}\int\limits_0^\pi {\left( {\cos (3 - n)x + \cos (3 + n)x} \right)dx} = 0 B n = πn c 2 0 ∫ l ψ ( x ) sin l πn x d x = πn c 2 0 ∫ π sin 3 x sin n x d x = πn c 1 0 ∫ π ( cos ( 3 − n ) x + cos ( 3 + n ) x ) d x = 0
if n ≠ 3 n \ne 3 n = 3
If n = 3 n=3 n = 3 then
B 3 = 2 3 π c ∫ 0 π sin 2 3 x d x = 1 3 π c ∫ 0 π ( 1 − cos 6 x ) d x = 1 3 π c ( x ∣ 0 π − 1 6 sin 6 x ∣ 0 π ) = 1 3 c {B_3} = \frac{2}{{3\pi c}}\int\limits_0^\pi {{{\sin }^2}3xdx} = \frac{1}{{3\pi c}}\int\limits_0^\pi {\left( {1 - \cos 6x} \right)dx = } \frac{1}{{3\pi c}}\left( {\left. x \right|_0^\pi - \frac{1}{6}\sin 6\left. x \right|_0^\pi } \right) = \frac{1}{{3c}} B 3 = 3 π c 2 0 ∫ π sin 2 3 x d x = 3 π c 1 0 ∫ π ( 1 − cos 6 x ) d x = 3 π c 1 ( x ∣ 0 π − 6 1 sin 6 x ∣ 0 π ) = 3 c 1
Then
u ( x , t ) = ∑ n = 1 ∞ ( A n cos c n t + B n sin c n t ) sin n x = = ( − 8 + 4 ) cos c t sin x + ( 1 + 1 2 ) cos 2 c t sin 2 x + ( − 8 27 + 4 27 ) cos 3 c t sin 3 x + 1 3 c sin 3 c t sin 3 x + ∑ n = 4 ∞ cos c n t sin n x = = − 4 cos c t sin x + 3 2 cos 2 c t sin 2 x − 4 27 cos 3 c t sin 3 x + 1 3 c sin 3 c t sin 3 x + ∑ n = 4 ∞ cos c n t sin n x u(x,t) = \sum\limits_{n = 1}^\infty {\left( {{A_n}\cos cnt + {B_n}\sin cnt} \right)} \sin nx =\\= ( - 8 + 4)\cos ct\sin x + \left( {1 + \frac{1}{2}} \right)\cos 2ct\sin 2x + \left( { - \frac{8}{{27}} + \frac{4}{{27}}} \right)\cos 3ct\sin 3x + \frac{1}{{3c}}\sin 3ct\sin 3x + \sum\limits_{n = 4}^\infty {\cos cnt\sin nx = }\\= - 4\cos ct\sin x + \frac{3}{2}\cos 2ct\sin 2x - \frac{4}{{27}}\cos 3ct\sin 3x + \frac{1}{{3c}}\sin 3ct\sin 3x + \sum\limits_{n = 4}^\infty {\cos cnt\sin nx} u ( x , t ) = n = 1 ∑ ∞ ( A n cos c n t + B n sin c n t ) sin n x = = ( − 8 + 4 ) cos c t sin x + ( 1 + 2 1 ) cos 2 c t sin 2 x + ( − 27 8 + 27 4 ) cos 3 c t sin 3 x + 3 c 1 sin 3 c t sin 3 x + n = 4 ∑ ∞ cos c n t sin n x = = − 4 cos c t sin x + 2 3 cos 2 c t sin 2 x − 27 4 cos 3 c t sin 3 x + 3 c 1 sin 3 c t sin 3 x + n = 4 ∑ ∞ cos c n t sin n x
Answer: u ( x , t ) = − 4 cos c t sin x + 3 2 cos 2 c t sin 2 x − 4 27 cos 3 c t sin 3 x + 1 3 c sin 3 c t sin 3 x + ∑ n = 4 ∞ cos c n t sin n x u(x,t)=- 4\cos ct\sin x + \frac{3}{2}\cos 2ct\sin 2x - \frac{4}{{27}}\cos 3ct\sin 3x + \frac{1}{{3c}}\sin 3ct\sin 3x + \sum\limits_{n = 4}^\infty {\cos cnt\sin nx} u ( x , t ) = − 4 cos c t sin x + 2 3 cos 2 c t sin 2 x − 27 4 cos 3 c t sin 3 x + 3 c 1 sin 3 c t sin 3 x + n = 4 ∑ ∞ cos c n t sin n x
Comments