According to the Fourier method, the solution to the equation has the form:
u(x,t)=n=1∑∞(Ancoslπnct+Bnsinlπnct)sinlπnx=n=1∑∞(Ancosππnct+Bnsinππnct)sinππnx=n=1∑∞(Ancoscnt+Bnsincnt)sinnx
Find the coefficients
An=l20∫lφ(x)sinlπnxdx=π20∫πx2(x−π)sinnxdx=π20∫π(x3−πx2)sinnxdx=∣∣u=x3−πx2du=(3x2−2πx)dxdv=sinnxdxv=−n1cosnx∣∣==π2(−nx3−πx2cosnx∣0π+n10∫π(3x2−2πx)cosnxdx)=∣∣u=3x2−2πxdu=(6x−2π)dxdv=cosnxdxv=n1sinnx∣∣==π2(0+n1(n3x2−2πxsinnx∣0π−n10∫π(6x−2π)sinnxdx))=∣∣u=6x−2πdu=6dxdv=sinnxdxv=−n1cosnx∣∣==π2(n1(0−n1(−n6x−2πcosnx∣0π+n10∫π6cosnxdx)))=π2(n1(−n1(−n6π−2πcosπn+n0−2πcos0+n26sinnx∣0π)))==−πn22(−n4π(−1)n−n2π+0)=n38(−1)n+n34
Bn=πnc20∫lψ(x)sinlπnxdx=πnc20∫πsin3xsinnxdx=πnc10∫π(cos(3−n)x+cos(3+n)x)dx=0
if n=3
If n=3 then
B3=3πc20∫πsin23xdx=3πc10∫π(1−cos6x)dx=3πc1(x∣0π−61sin6x∣0π)=3c1
Then
u(x,t)=n=1∑∞(Ancoscnt+Bnsincnt)sinnx==(−8+4)cosctsinx+(1+21)cos2ctsin2x+(−278+274)cos3ctsin3x+3c1sin3ctsin3x+n=4∑∞coscntsinnx==−4cosctsinx+23cos2ctsin2x−274cos3ctsin3x+3c1sin3ctsin3x+n=4∑∞coscntsinnx
Answer: u(x,t)=−4cosctsinx+23cos2ctsin2x−274cos3ctsin3x+3c1sin3ctsin3x+n=4∑∞coscntsinnx
Comments