Let
y=yh+yp
To find the homogeneous equitation,
An auxillary equation is
2m3+m2−8m−4=0
2m2(m+1)−4(2m+1)=0
(2m2−4)(m+1)=0
(m+2)(m−2)(2m+1)=0
m=2,−2,−21
Hence ,the homogeneous solution is
yh=C1e2−x+C2e−2x+C3e2x
To find the particular solution,
By trigonometric identities;
7−2e−x−cos2(2x)=7−2e−x−21−21cos(4x)=213−2e−x−21cos(4x)
Now,
Let
yp=A+Be−x+Ccos(4x)+Dsin(4x)
By differentiation;
yp′=−Be−x−4Csin(4x)+4Dsin(4x)
yp′′=Be−x−16Ccos(4x)−16Dsin(4x)
yp′′′=−Be−x+64Csin(4x)−64Dcos(4x)
By substitution into the given equation;
−2Be−x+128Csin(4x)−128Dcos(4x)+Be−x−16Ccos(4x)−16Dsin(4x)+8Be−x+32Csin(4x)−32Dcos(4x)−4A−4Be−x−4Ccos(4x)−4Dsin(4x)=213−2e−x−21cos(4x)
Simplify;
−4A+3Be−x+(160C−20D)sin(4x)+(−160D−20C)cos(4x)=213−2e−x−21cos(4x)
By comparison;
−4A=213
A=−813
3B=−2
B=−32
(160C−20D)=0
C=81D ....(i)
Also,
−160D−20C=−21 ...(ii)
Combining (i) and (ii) ,
D=3251
C=26001
Substitute the constants into yp;
yp=−813−32e−x+26001cos(4x)+3251sin(4x)
Hence the general solution of the question is
y=yh+yp
y=C1e−2x+C2e−2x+C3e2x−213−32e−x+26001cos(4x)+3251sin(4x)
Comments