Question #225233

Solve the differential equation 2y'''+ y''- 8y- 4y = 7 - 2e-x - cos(2x).


1
Expert's answer
2021-08-16T17:06:57-0400


Let

y=yh+yp

To find the homogeneous equitation,

An auxillary equation is

2m3+m28m4=02m^3+m^2-8m-4=0

2m2(m+1)4(2m+1)=02m^2(m+1)-4(2m+1)=0

(2m24)(m+1)=0(2m^2-4)(m+1)=0

(m+2)(m2)(2m+1)=0(m+2)(m-2)(2m+1)=0

m=2,2,12m=2,-2 ,-\frac 12

Hence ,the homogeneous solution is

yh=C1ex2+C2e2x+C3e2xy_h=C_1e^{\frac{-x}{2}}+C_2e^{-2x}+C_3e^{2x}

To find the particular solution,

By trigonometric identities;

72excos2(2x)=72ex1212cos(4x)=1322ex12cos(4x)7-2e^{-x}-cos^2(2x)=7-2e^{-x}-\frac12-\frac12cos(4x)=\frac{13}2-2e^{-x}-\frac12cos(4x)

Now,

Let

yp=A+Bex+Ccos(4x)+Dsin(4x)y_p=A+Be^{-x}+Ccos(4x)+Dsin(4x)

By differentiation;

yp=Bex4Csin(4x)+4Dsin(4x)y_p'=-Be^{-x}-4Csin(4x)+4Dsin(4x)

yp=Bex16Ccos(4x)16Dsin(4x)y_p''=Be^{-x}-16Ccos(4x)-16Dsin(4x)

yp=Bex+64Csin(4x)64Dcos(4x)y_p'''=-Be^{-x}+64Csin(4x)-64Dcos(4x)

By substitution into the given equation;

2Bex+128Csin(4x)128Dcos(4x)+Bex16Ccos(4x)16Dsin(4x)+8Bex+32Csin(4x)32Dcos(4x)4A4Bex4Ccos(4x)4Dsin(4x)=1322ex12cos(4x)-2Be^{-x}+128Csin(4x)-128Dcos(4x)+Be^{-x}-16Ccos(4x)-16Dsin(4x)+8Be^{-x}+32Csin(4x)-32Dcos(4x)-4A-4Be^{-x}-4Ccos(4x)-4Dsin(4x)=\frac{13}2-2e^{-x}-\frac12cos(4x)

Simplify;

4A+3Bex+(160C20D)sin(4x)+(160D20C)cos(4x)=1322ex12cos(4x)-4A+3Be^{-x}+(160C-20D)sin(4x)+(-160D-20C)cos(4x)=\frac{13}2-2e^{-x}-\frac12cos(4x)

By comparison;

4A=132-4A=\frac{13}2

A=138A=-\frac{13}8

3B=23B=-2

B=23B=-\frac23

(160C20D)=0(160C-20D)=0

C=18DC=\frac18D ....(i)

Also,

160D20C=12-160D-20C=-\frac12 ...(ii)

Combining (i) and (ii) ,

D=1325D=\frac {1}{325}

C=12600C=\frac{1}{2600}

Substitute the constants into yp;

yp=13823ex+12600cos(4x)+1325sin(4x)y_p=-\frac{13}8-\frac23e^{-x}+\frac1{2600}cos(4x)+\frac1{325}sin(4x)

Hence the general solution of the question is

y=yh+ypy=y_h+y_p

y=C1ex2+C2e2x+C3e2x13223ex+12600cos(4x)+1325sin(4x)y=C_1e^{-\frac x2}+C_2e^{-2x}+C_3e^{2x}-\frac{13}2-\frac23e^{-x}+\frac{1}{2600}cos(4x)+\frac1{325}sin(4x)












Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS