The Taylor series expansion of the function f(x) has the form: f(x)=f(a)+f′(a)(x−a)+2!f′′(a)(x−a)2+3!f′′′(a)(x−a)3+...
In our case the point is a=1. We receive: f(x)=f(1)+f′(1)(x−1)+2!f′′(1)(x−1)2+3!f′′′(1)(x−1)3+...
We take derivatives and get:
f′(x)=f′(1)+f′′(1)(x−1)+2!f′′′(1)(x−1)2+...
f′′(x)=f′′(1)+f′′′(1)(x−1)+...
The initial conditions take the form: f(1)=4, f′(1)=1. We substitute the expansion and receive:
2x2(f′′(1)+f′′′(1)(x−1)+...)−3x(f′(1)+f′′(1)(x−1)+2!f′′′(1)(x−1)2+...)+(x+1)(f(1)+f′(1)(x−1)+2!f′′(1)(x−1)2+3!f′′′(1)(x−1)3+...)=0
We denote: z=x−1 and receive: 2(z+1)2(f′′(1)+f′′′(1)z+...)−3(z+1)(f′(1)+f′′(1)z+2!f′′′(1)z2+...)+(z+2)(f(1)+f′(1)z+2!f′′(1)z2+3!f′′′(1)z3+...)=0
We rewrite and receive:
2(z2+2z+1)(f′′(1)+f′′′(1)z+...)−3(z+1)(f′(1)+f′′(1)z+2!f′′′(1)z2+...)+(z+2)(f(1)+f′(1)z+2!f′′(1)z2+3!f′′′(1)z3+...)=0
We collect the terms near 1,z,z2,z3,... and get: 2f′′(1)−3f′(1)+2f(1)+z(4f′′(1)+2f′′′(1)−3f′′(1)−3f′(1)+f(1)+2f′(1))+...
We set: f(1)=4 and f′(1)=1 and get: 2f′′(1)−3+8=0. It implies f′′(1)=−2.5. The term near z yields:−10+2f′′′(1)−7.5−3+4+2=2f′′′(1)−20.5+6=−14.5. Thus, f′′′(1)=−7.25. We obtained first terms of the expansion: f(1)=4, f′(1)=1, f′′(1)=−2.5, f′′′(1)=−14.5. In case we calculate the coefficients near z4,z5 and other terms, we will receive all the other derivatives (f(4)(1),f(5)(1),... ) and the explicit form of f(x).
Comments