Question #224754

Use the Taylor series expansion to find the general solution of each of the following

2x2y''-3xy'+(x+1)y=0

y(1)=4 y'(1)=1


1
Expert's answer
2021-08-12T17:29:05-0400

The Taylor series expansion of the function f(x)f(x) has the form: f(x)=f(a)+f(a)(xa)+f(a)2!(xa)2+f(a)3!(xa)3+...f(x)=f(a)+f'(a)(x-a)+\frac{f''(a)}{2!}(x-a)^2+\frac{f'''(a)}{3!}(x-a)^3+...

In our case the point is a=1a=1. We receive: f(x)=f(1)+f(1)(x1)+f(1)2!(x1)2+f(1)3!(x1)3+...f(x)=f(1)+f'(1)(x-1)+\frac{f''(1)}{2!}(x-1)^2+\frac{f'''(1)}{3!}(x-1)^3+...

We take derivatives and get:

f(x)=f(1)+f(1)(x1)+f(1)2!(x1)2+...f'(x)=f'(1)+f''(1)(x-1)+\frac{f'''(1)}{2!}(x-1)^2+...

f(x)=f(1)+f(1)(x1)+...f''(x)=f''(1)+f'''(1)(x-1)+...

The initial conditions take the form: f(1)=4f(1)=4, f(1)=1f'(1)=1. We substitute the expansion and receive:

2x2(f(1)+f(1)(x1)+...)3x(f(1)+f(1)(x1)+f(1)2!(x1)2+...)+(x+1)(f(1)+f(1)(x1)+f(1)2!(x1)2+f(1)3!(x1)3+...)=02x^2(f''(1)+f'''(1)(x-1)+...)-3x(f'(1)+f''(1)(x-1)+\frac{f'''(1)}{2!}(x-1)^2+...)+(x+1)(f(1)+f'(1)(x-1)+\frac{f''(1)}{2!}(x-1)^2+\frac{f'''(1)}{3!}(x-1)^3+...)=0

We denote: z=x1z=x-1 and receive: 2(z+1)2(f(1)+f(1)z+...)3(z+1)(f(1)+f(1)z+f(1)2!z2+...)+(z+2)(f(1)+f(1)z+f(1)2!z2+f(1)3!z3+...)=02(z+1)^2(f''(1)+f'''(1)z+...)-3(z+1)(f'(1)+f''(1)z+\frac{f'''(1)}{2!}z^2+...)+(z+2)(f(1)+f'(1)z+\frac{f''(1)}{2!}z^2+\frac{f'''(1)}{3!}z^3+...)=0

We rewrite and receive:

2(z2+2z+1)(f(1)+f(1)z+...)3(z+1)(f(1)+f(1)z+f(1)2!z2+...)+(z+2)(f(1)+f(1)z+f(1)2!z2+f(1)3!z3+...)=02(z^2+2z+1)(f''(1)+f'''(1)z+...)-3(z+1)(f'(1)+f''(1)z+\frac{f'''(1)}{2!}z^2+...)+(z+2)(f(1)+f'(1)z+\frac{f''(1)}{2!}z^2+\frac{f'''(1)}{3!}z^3+...)=0

We collect the terms near 1,z,z2,z3,...1,z,z^2,z^3,... and get: 2f(1)3f(1)+2f(1)+z(4f(1)+2f(1)3f(1)3f(1)+f(1)+2f(1))+...2f''(1)-3f'(1)+2f(1)+z(4f''(1)+2f'''(1)-3f''(1)-3f'(1)+f(1)+2f'(1))+...

We set: f(1)=4f(1)=4 and f(1)=1f'(1)=1 and get: 2f(1)3+8=02f''(1)-3+8=0. It implies f(1)=2.5f''(1)=-2.5. The term near zz yields:10+2f(1)7.53+4+2=2f(1)20.5+6=14.5-10+2f'''(1)-7.5-3+4+2=2f'''(1)-20.5+6=-14.5. Thus, f(1)=7.25f'''(1)=-7.25. We obtained first terms of the expansion: f(1)=4f(1)=4, f(1)=1f'(1)=1, f(1)=2.5f''(1)=-2.5, f(1)=14.5f'''(1)=-14.5. In case we calculate the coefficients near z4,z5z^4,z^5 and other terms, we will receive all the other derivatives (f(4)(1),f(5)(1),...f^{(4)}(1),f^{(5)}(1),... ) and the explicit form of f(x)f(x).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS