Question #224753

Solve the following system of equations

dx/dt-dy/dt-2x-4y=t2

dx/dt+dy/dt-x-y=1


1
Expert's answer
2021-08-10T13:02:49-0400
(x+y)(x+y)=1(x+y)'-(x+y)=1

μ(t)=et\mu(t)=e^{-t}

et(x+y)et(x+y)=ete^{-t}(x+y)'-e^{-t}(x+y)=e^{-t}

(et(x+y))=et(e^{-t}(x+y))'=e^{-t}

Integrate


d(et(x+y))=etdt\int d(e^{-t}(x+y))=\int e^{-t}dt

et(x+y)=et+C1e^{-t}(x+y)=-e^{-t}+C_1

x+y=1+C1etx+y=-1+C_1e^{t}

y=x1+C1ety=-x-1+C_1e^{t}


y=x+C1ety'=-x'+C_1e^{t}

x+xC1et2x+4x+44C1et=t2x'+x'-C_1e^{t}-2x+4x+4-4C_1e^{t}=t^2

2x+2x=5C1et+t242x'+2x=5C_1e^{t}+t^2-4

x+x=52C1et+12t22x'+x=\dfrac{5}{2}C_1e^{t}+\dfrac{1}{2}t^2-2

μ(t)=et\mu(t)=e^t

etx+etx=52C1e2t+12ett22ete^{t}x'+e^{t}x=\dfrac{5}{2}C_1e^{2t}+\dfrac{1}{2}e^{t}t^2-2e^{t}

d(etx)=52C1e2t+12ett22etd(e^{t}x)=\dfrac{5}{2}C_1e^{2t}+\dfrac{1}{2}e^{t}t^2-2e^{t}

Integrate


d(etx)=(52C1e2t+12ett22et)dt\int d(e^{t}x)=\int (\dfrac{5}{2}C_1e^{2t}+\dfrac{1}{2}e^{t}t^2-2e^{t})dt

ett2dt=t2et2tet+2et+C3\int e^{t}t^2dt=t^2e^t-2te^t+2e^{t}+C_3

etx=54C1e2t+12ett2ett+et2et+C2e^{t}x=\dfrac{5}{4}C_1e^{2t}+\dfrac{1}{2}e^{t}t^2-e^{t}t+e^{t}-2e^{t}+C_2

x(t)=54C1et+12t2t1+C2etx(t)=\dfrac{5}{4}C_1e^{t}+\dfrac{1}{2}t^2-t-1+C_2e^{-t}

y(t)=54C1et12t2+t+1+C2et1+C1ety(t)=-\dfrac{5}{4}C_1e^{t}-\dfrac{1}{2}t^2+t+1+C_2e^{-t}-1+C_1e^{t}

y(t)=14C1et12t2+t+C2ety(t)=-\dfrac{1}{4}C_1e^{t}-\dfrac{1}{2}t^2+t+C_2e^{-t}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS