Question #224752

Solve the following systems of equations

2dx/dt+dy/dt-3x-y=t

dx/dt+dy/dt-4x-y=et






1
Expert's answer
2021-08-10T12:59:35-0400
2x+y3xy=t2x'+y'-3x-y=t

x+y4xy=etx'+y'-4x-y=e^t




y=2x+3x+y+ty'=-2x'+3x+y+t

y=x+4x+y+ety'=-x'+4x+y+e^t


2x+3x+y+t=y=x+4x+y+et-2x'+3x+y+t=y'=-x'+4x+y+e^t

x+x=tetx'+x=t-e^t

μ(t)=et\mu(t)=e^t

etx+etx=ettetete^tx'+e^tx=e^tt-e^te^t

(etx)=ette2t(e^tx)'=e^tt-e^{2t}

Integrate


d(etx)=(ette2t)dt\int d(e^tx)=\int(e^tt-e^{2t})dt

ettdt=tetet+C3\int e^ttdt=te^t-e^t+C_3

etx=tetet12e2t+C1e^tx=te^t-e^t-\dfrac{1}{2}e^{2t}+C_1

x(t)=t112et+C1etx(t)=t-1-\dfrac{1}{2}e^t+C_1e^{-t}

x=112etC1etx'=1-\dfrac{1}{2}e^t-C_1e^{-t}

2et2C1et+y3t+3+32et3C1ety=t2-e^t-2C_1e^{-t}+y'-3t+3+\dfrac{3}{2}e^t-3C_1e^{-t}-y=t

yy=4t512et+5C1ety'-y=4t-5-\dfrac{1}{2}e^t+5C_1e^{-t}

μ(t)=et\mu(t)=e^{-t}

etyety=4tet5et12+5C1e2te^{-t}y'-e^{-t}y=4te^{-t}-5e^{-t}-\dfrac{1}{2}+5C_1e^{-2t}

(ety)=4tet5et12+5C1e2t(e^{-t}y)'=4te^{-t}-5e^{-t}-\dfrac{1}{2}+5C_1e^{-2t}

Integrate


d(ety)=(4tet5et12+5C1e2t)dt\int d(e^{-t}y)=\int(4te^{-t}-5e^{-t}-\dfrac{1}{2}+5C_1e^{-2t})dt

ety=4tet4et+5et12t52C1e2t+C2e^{-t}y=-4te^{-t}-4e^{-t}+5e^{-t}-\dfrac{1}{2}t-\dfrac{5}{2}C_1e^{-2t}+C_2

y(t)=4t+112tet52C1et+C2ety(t)=-4t+1-\dfrac{1}{2}te^{t}-\dfrac{5}{2}C_1e^{-t}+C_2e^{t}



x(t)=t112et+C1etx(t)=t-1-\dfrac{1}{2}e^t+C_1e^{-t}

y(t)=4t+112tet52C1et+C2ety(t)=-4t+1-\dfrac{1}{2}te^{t}-\dfrac{5}{2}C_1e^{-t}+C_2e^{t}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS