Question #224750

Solve the following differential equation

dx/dt+dy/dt-2x-4y=et

dx/dt+dy/dt-y=e4t




1
Expert's answer
2021-08-10T13:13:09-0400
2x+4y+et=y+e4t2x+4y+e^{t}=y+e^{4t}

x=32y12et+12e4tx=-\dfrac{3}{2}y-\dfrac{1}{2}e^{t}+\dfrac{1}{2}e^{4t}

x=32y12et+2e4tx'=-\dfrac{3}{2}y'-\dfrac{1}{2}e^{t}+2e^{4t}

32y12et+2e4t+y+3y+ete4t4y=et-\dfrac{3}{2}y'-\dfrac{1}{2}e^{t}+2e^{4t}+y'+3y+e^{t}-e^{4t}-4y=e^{t}

12y+y=12et+e4t\dfrac{1}{2}y'+y=-\dfrac{1}{2}e^{t}+e^{4t}

y+2y=et+2e4ty'+2y=-e^{t}+2e^{4t}


μ(t)=e2t\mu(t)=e^{2t}

e2ty+2e2ty=e3t+2e6te^{2t}y'+2e^{2t}y=-e^{3t}+2e^{6t}

(e2ty)=e3t+2e6t(e^{2t}y)'=-e^{3t}+2e^{6t}

Integrate


d(e2ty)=(e3t+2e6t)dt\int d(e^{2t}y)=\int(-e^{3t}+2e^{6t})dt

e2ty=13e3t+13e6t+C1e^{2t}y=-\dfrac{1}{3}e^{3t}+\dfrac{1}{3}e^{6t}+C_1

y(t)=13et+13e4t+C1e2ty(t)=-\dfrac{1}{3}e^{t}+\dfrac{1}{3}e^{4t}+C_1e^{-2t}

x(t)=12et12e4t3C12e2t12et+12e4tx(t)=\dfrac{1}{2}e^{t}-\dfrac{1}{2}e^{4t}-\dfrac{3C_1}{2}e^{-2t}-\dfrac{1}{2}e^{t}+\dfrac{1}{2}e^{4t}




x(t)=3C12e2tx(t)=-\dfrac{3C_1}{2}e^{-2t}

y(t)=13et+13e4t+C1e2ty(t)=-\dfrac{1}{3}e^{t}+\dfrac{1}{3}e^{4t}+C_1e^{-2t}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS