Question #224721

solve problem 23 under the assumption that the solution is pumped out at a faster rate of 10 gal/min when is the tank empty


1
Expert's answer
2021-08-11T10:49:25-0400
dAdt=rate inrate out\dfrac{dA}{dt}=rate\ in-rate\ out

dAdt=RinRout\dfrac{dA}{dt}=R_{in}-R_{out}

Rin=(2 lbsgal)(5 galmin)=10 lbsminR_{in}=(2\ \dfrac{lbs}{gal})(5\ \dfrac{gal}{min})=10\ \dfrac{lbs}{min}

Rout=(A5005tlbsgal)(10 galmin)=2A100t lbsminR_{out}=(\dfrac{A}{500-5t}\dfrac{lbs}{gal})(10\ \dfrac{gal}{min})=\dfrac{2A}{100-t}\ \dfrac{lbs}{min}


dAdt=102A100t,A(0)=0\dfrac{dA}{dt}=10-\dfrac{2A}{100-t}, A(0)=0

dAdt+(2100t)A=10\dfrac{dA}{dt}+(\dfrac{2}{100-t})A=10

μ(t)=e2100tdt=e2ln(100t)=(100t)2\mu(t)=e^{\int{2 \over 100-t}dt}=e^{-2\ln(100-t)}=(100-t)^{-2}

(100t)2dAdt+2(100t)3A=10(100t)2(100-t)^{-2}\dfrac{dA}{dt}+2(100-t)^{-3}A=10(100-t)^{-2}

ddt((100t)2A)=10(100t)2\dfrac{d}{dt}((100-t)^{-2}A)=10(100-t)^{-2}

Integrate


d((100t)2A)=10(100t)2dt\int d((100-t)^{-2}A)=\int10(100-t)^{-2}dt

(100t)2A=10(100t)1+C(100-t)^{-2}A=10(100-t)^{-1}+C

A=10(100t)+C(100t)2A=10(100-t)+C(100-t)^2

A(0)=0:0=10(1000)+C(1000)2A(0)=0:0=10(100-0)+C(100-0)^2

=>C=110=>C=-\dfrac{1}{10}

A(t)=10(100t)110(100t)2A(t)=10(100-t)-\dfrac{1}{10}(100-t)^2

T=500 gal10 galmin5 galmin=100 minT=\dfrac{500\ gal}{10\ \dfrac{gal}{min}-5\ \dfrac{gal}{min}}=100\ min

The tank will be empty after 100 min.


A First Course in Differential Equations with Modeling Applications 10th Edition

by Dennis G. Zill, page 91


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS