Question #224556

solve(d^2+dd'-6d'^2)z=cos(2x+y)


1
Expert's answer
2021-08-09T16:03:58-0400

The auxiliary equation is; m2+m6=0(m2)(m+3)=0m=2, 3m^{2}+m-6=0\newline (m-2)(m+3)=0\newline m=2,\ -3

C.F = f1(y+2x)+f2(y-3x)

P.I = 1D2+DDI6DI2cos(2x+y)\frac{1}{D^{2}+DD^{I}-6{D^{I}}^{2}}cos(2x+y)

=R.P1(D2DI)(D+3DI)ei(2x+y)\frac{1}{(D-2D^{I})(D+3D^{I})}e^{i(2x+y)}

=R.P1(2i+3(i))ei(2x+y)\frac{1}{(2i+3(i))}e^{i(2x+y)}

=R.Pi5x(cos(2x+y)+i sin(2x+y))\frac{-i}{5}x(cos(2x+y)+i\ sin(2x+y))

=x5cos(2x+y)\frac{-x}{5}cos(2x+y)

z=f1(y+2x)+f2(y-3x)-x5cos(2x+y)\frac{x}{5}cos(2x+y)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS