solve(d^2+dd'-6d'^2)z=cos(2x+y)
The auxiliary equation is; m2+m−6=0(m−2)(m+3)=0m=2, −3m^{2}+m-6=0\newline (m-2)(m+3)=0\newline m=2,\ -3m2+m−6=0(m−2)(m+3)=0m=2, −3
C.F = f1(y+2x)+f2(y-3x)
P.I = 1D2+DDI−6DI2cos(2x+y)\frac{1}{D^{2}+DD^{I}-6{D^{I}}^{2}}cos(2x+y)D2+DDI−6DI21cos(2x+y)
=R.P1(D−2DI)(D+3DI)ei(2x+y)\frac{1}{(D-2D^{I})(D+3D^{I})}e^{i(2x+y)}(D−2DI)(D+3DI)1ei(2x+y)
=R.P1(2i+3(i))ei(2x+y)\frac{1}{(2i+3(i))}e^{i(2x+y)}(2i+3(i))1ei(2x+y)
=R.P−i5x(cos(2x+y)+i sin(2x+y))\frac{-i}{5}x(cos(2x+y)+i\ sin(2x+y))5−ix(cos(2x+y)+i sin(2x+y))
=−x5cos(2x+y)\frac{-x}{5}cos(2x+y)5−xcos(2x+y)
z=f1(y+2x)+f2(y-3x)-x5cos(2x+y)\frac{x}{5}cos(2x+y)5xcos(2x+y)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments