Question #223126

Express 1 / y(y+1) in partial fractions.

Hence solve the differential equation dy/dx = y(y+1) / x given that y=4 when x=2 expressing y explicitly in terms of x.


1
Expert's answer
2021-09-21T00:21:23-0400

Solution:

1y(y+1)=Ay+By+11y(y+1)=A(y+1)+Byy(y+1)1=Ay+A+By0.y+1=y(A+B)=A\\ \dfrac1{y(y+1)}=\dfrac{A}{y}+\dfrac{B}{y+1} \\\Rightarrow \dfrac1{y(y+1)}=\dfrac{A(y+1)+By}{y(y+1)} \\\Rightarrow 1=Ay+A+By \\\Rightarrow 0.y+1=y(A+B)=A

On comparing both sides,

A+B=0,A=1B=1A+B=0,A=1 \\\Rightarrow B=-1

Thus, 1y(y+1)=1y1y+1\dfrac1{y(y+1)}=\dfrac{1}{y}-\dfrac{1}{y+1} ...(i)

Now, given dydx=y(y+1)x\dfrac{dy}{dx}=\dfrac{y(y+1)}{x}

1y(y+1)dy=1xdx[1y1y+1]dy=1xdx [using (i)]\Rightarrow \dfrac{1}{y(y+1)}dy=\dfrac{1}{x}dx \\ \Rightarrow [\dfrac{1}{y}-\dfrac{1}{y+1}]dy=\dfrac{1}{x}dx \ [using\ (i)]

On integrating both sides,

lnylny+1=lnx+lnClnyy+1=lnxCyy+1=xC\ln |y|-\ln|y+1|=\ln |x|+\ln C \\\Rightarrow \ln|\dfrac{y}{y+1}|=\ln |\dfrac xC| \\\Rightarrow \dfrac{y}{y+1}=\dfrac xC

Now, put y=4, x=2

45=2CC=52\dfrac{4}{5}=\dfrac 2C \\\Rightarrow C=\dfrac52

Thus, the solution is yy+1=2x5\dfrac{y}{y+1}=\dfrac {2x}{5}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS