Solution:
y(y+1)1=yA+y+1B⇒y(y+1)1=y(y+1)A(y+1)+By⇒1=Ay+A+By⇒0.y+1=y(A+B)=A
On comparing both sides,
A+B=0,A=1⇒B=−1
Thus, y(y+1)1=y1−y+11 ...(i)
Now, given dxdy=xy(y+1)
⇒y(y+1)1dy=x1dx⇒[y1−y+11]dy=x1dx [using (i)]
On integrating both sides,
ln∣y∣−ln∣y+1∣=ln∣x∣+lnC⇒ln∣y+1y∣=ln∣Cx∣⇒y+1y=Cx
Now, put y=4, x=2
54=C2⇒C=25
Thus, the solution is y+1y=52x
Comments