1dxdy−2xy=0dxdy=2xyydy=2xdxIntegrate both sideslny=x2+Cy=Aex2When x=0,y=33=Ae0A=3The particular solution is y=3ex2.2.xdxdy+y2=0xdy=−y2dx−y2dy=xdxIntegrate both sidesy1=lnx+Cy=lnx+C1When x=1,y=2121=lnx+C121=C1C=2The particular solution is y=lnx+21
Comments