c) We first have to solve the general equation:
(x+4)dxdy+3=y(x+4)dxdy=y−3⟹dxdy=x+4y−3
Once we separate the terms we proceed to solve the equation:
∫y−3dy=∫x+4dx→ln(y−3)=ln(x+4)+lnC⟹ygeneral=C(x+4)+3;
We proceed to find the particular solution and
then we use y(1)=13:13=C(1+4)+3→C=510=2⟹yparticular=2(x+4)+3⟹yparticular=2x+11
d) For the next equation we proceed to separate the terms:
eydxdy+sin(x)=0→eydy=−sin(x)dx ∫eydy=−∫sin(x)dx→ey=cos(x)+C⟹y=ln[cos(x)+C]
Once we have the general solution we proceed
to find the particular solution so
then we use y(π/2)=0:e0=cos(π/2)+C→C=e0−cos(π/2)=1−0→C=1⟹yparticular=ln[cos(x)+1]
- Thomas, G. B., & Finney, R. L. (1961). Calculus. Addison-Wesley Publishing Company.
Comments