Question #223124

Find the particular solution of each of the differential equation expressing y explicitly in terms of x.

c) (x+4)dy/dx + 3 = y y=13 when x= 1

d) eydy/dx + sinx = 0 y=0 when x = π/2


1
Expert's answer
2021-09-17T03:45:15-0400

c) We first have to solve the general equation:


(x+4)dydx+3=y(x+4)dydx=y3    dydx=y3x+4(x+4)\cfrac{dy}{dx} + 3 = y \\ (x+4)\cfrac{dy}{dx}=y-3 \implies \cfrac{dy}{dx}=\cfrac{y-3}{x+4}


Once we separate the terms we proceed to solve the equation:


dyy3=dxx+4ln(y3)=ln(x+4)+lnC    ygeneral=C(x+4)+3;\int \frac{dy}{y-3}=\int \frac{dx}{x+4} \\\to \ln(y-3)=\ln(x+4)+\ln C \\\implies y_{general}=C(x+4)+3;


We proceed to find the particular solution and

then we use y(1)=13:13=C(1+4)+3C=105=2    yparticular=2(x+4)+3    yparticular=2x+11\\ \text{then we use }y(1)=13: \\13=C(1+4)+3 \to C=\frac{10}{5}=2 \\ \implies y_{particular}=2(x+4)+3 \\ \implies y_{particular}=2x+11


d) For the next equation we proceed to separate the terms:

eydydx+sin(x)=0eydy=sin(x)dx eydy=sin(x)dxey=cos(x)+C    y=ln[cos(x)+C]e^y\cfrac{dy}{dx}+\sin (x) =0 \to e^y{dy}=-\sin (x)dx \\ \text{ } \\ \int e^y{dy}=- \int \sin (x)dx \\ \to e^y= \cos (x)+C \\ \implies y=\ln[\cos (x)+C]


Once we have the general solution we proceed

to find the particular solution so

then we use y(π/2)=0:e0=cos(π/2)+CC=e0cos(π/2)=10C=1    yparticular=ln[cos(x)+1]\\ \text{then we use }y(π/2)=0: \\ e^0= \cos (π/2)+C \\ \to C=e^0-\cos (π/2)=1-0 \to C=1 \\ \implies y_{particular}=\ln[\cos (x)+1]


In conclusion, the particular solutions for the differential equations are c) y=2x+11, and d) y=Ln[cos(x)+1].Reference:

  • Thomas, G. B., & Finney, R. L. (1961). Calculus. Addison-Wesley Publishing Company.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS