Question #223123

Find the particular solution of each of the differential equation expressing y explicitly in terms of x.

a) y2dy/dx = 2x2+1 y=1 when x=1

b) xdy/dx = y+2 y=7 when x=3


1
Expert's answer
2021-09-17T03:49:55-0400

a) Integrate


y2dy=(2x2+1)dx\int y^2dy=\int (2x^2+1)dx

13y3=23x3+x+13C\dfrac{1}{3}y^3 =\dfrac{2}{3}x^3+x+\dfrac{1}{3}C

y3=2x3+3x+Cy^3 =2x^3+3x+C

y(1)=1y(1)=1


(1)3=2(1)3+3(1)+C(1)^3 =2(1)^3+3(1)+C

C=4C=-4

The particular solution of each of the given differential equation is


y=2x3+3x43y=\sqrt[3]{2x^3+3x-4}

b)


xdy/dx=y+2xdy/dx = y+2

dyy+2=dxx\dfrac{dy}{y+2}=\dfrac{dx}{x}

Integrate


dyy+2=dxx\int \dfrac{dy}{y+2}=\int\dfrac{dx}{x}

ln(y+2)=ln(x)+lnC\ln(|y+2|)=\ln(|x|)+\ln C

y+2=Cxy+2=Cx

y(3)=7y(3)=7


7+2=C(3)=>C=37+2 =C(3)=>C=3

C=4C=-4

The particular solution of each of the given differential equation is


y=3x2y=3x-2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS