Question #223116

Find the general solution of each differential equation, expressing y explicitly in terms of x.

1) dy/dx = 2y

2) dy/dx = y+1 / x+2


1
Expert's answer
2021-09-14T06:05:35-0400

1)

dy/dx=2ydy/dx=2y

dyy=2dx\dfrac{dy}{y}=2dx

Integrate

dyy=2dx\int\dfrac{dy}{y}=\int2dx

lny=2x+lnC\ln|y|=2x+\ln C

y=Ce2xy=Ce^{2x}

2)

dydx=y+1x+2\dfrac{dy}{dx}=\dfrac{y+1}{x+2}

dyy+1=dxx+2\dfrac{dy}{y+1}=\dfrac{dx}{x+2}

Integrate

dyy+1=dxx+2\int\dfrac{dy}{y+1}=\int\dfrac{dx}{x+2}

lny+1=lnx+2+lnC\ln|y+1|=\ln|x+2|+\ln C

y+1=C(x+2)y+1=C(x+2)

y=Cx+2C1y=Cx+2C-1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS