Question #222920

xyy''+yy'+x2y'3=0


1
Expert's answer
2021-08-06T09:47:00-0400

given xyy+yy+x2y2=0( exact question )solution this equation is a homogeneous polynomial of degree 2 with respect to y, y, y.letting y=ev(x) will reducee the order of the equation this gives dydx =ev(x)dvdx and d2ydx2=ev(x)((dvdx)2+d2vdx2)e2vx2(dvdx)2+e2vdvdx+e2v x ((dvdx)2+d2vdx2)=0e2v[x2(dvdx)2+dvdx+ x ((dvdx)2+d2vdx2)]=0e2v(x d2vdx2 + dvdx +x( dvdx)2(x+1))=0e2v(x2 (dvdx)2 +x (dvdx)2 +x  d2vdx2 + dvdx)=0e2v=0 and (x2 (dvdx)2 +x (dvdx)2 +x  d2vdx2 + dvdx)=0solve e2v=0no solution exist (exponential terms never become to zero so we say no solution exist)let dvdx=uwhich gives d2vdx2=dudxsubtract x2 u2 + x u2 from both sides:x dudx+u= x(x+1)u2divide both sides by xu2dudxu21xu=x+1let w=1u which gives dwdx=dudxu2dwdxwx=x+1let μ= e 1 xdx=1xmultiply both side by μ dwdxxwx2=(x1x)substitute 1x2=d(1x)dxdwdxx+d(1x)dxw=(x1x)apply the reverse product rule f dgdx + g dfdx=d(fg)dx to the  left hand side d(wx)dx=(x1x)integrate both sides with respect to x  d(wx)dx= (x1)xdxevalute the integral wx=x+ log x + c1 divide both side by μ =1xw=x (x+log x + c1 ) solve for uu= 1w= 1x(x+log x )+c1substitute back for dvdx=udvdx=1x(x+log x)+c1integrate both side with respect to xv= 1x(x+log x)+c1dx +c2substitute back for y = ev , which give v= log (y)log y=  1x(x+log x)+c1dx +c2solve for y y=e  1x(x+log x)+c1dx +c2it is required answer, here not neccesary solve this further.given \space \\ xyy''+yy'+x^2y'^2=0( \space exact \space question \space )\\ \\ solution \space \\ this \space equation \space is \space a \space homogeneous \space polynomial \space of \space degree \space 2 \space with \space respect \space to \space y, \space y', \space y''.\\ letting \space y=e^{v(x)} \space will \space reducee \space the \space order \space of \space the \space equation \space \\ this \space gives \space \frac{dy}{dx} \space =e^{v(x)}\frac{dv}{dx} \space and \space \frac{d^2y}{dx^2}= e^{v(x)}((\frac{dv}{dx})^2+\frac{d^2v}{dx^2})\\ -----------------------------\\ e^{2v}x^2(\frac{dv}{dx})^2+e^{2v}\frac{dv}{dx}+e^{2v} \space x \space ((\frac{dv}{dx})^2+\frac{d^2v}{dx^2})=0\\ e^{2v}[x^2(\frac{dv}{dx})^2+\frac{dv}{dx}+ \space x \space ((\frac{dv}{dx})^2+\frac{d^2v}{dx^2})]=0\\ e^{2v}(x \space \frac{d^2v}{dx^2} \space + \space \frac{dv}{dx} \space +x (\space \frac{dv}{dx})^2(x+1))=0\\ e^{2v}(x^2 \space (\frac{dv}{dx})^2 \space +x \space (\frac{dv}{dx})^2 \space +x \space \space \frac{d^2v}{dx^2} \space + \space \frac{dv}{dx})=0\\ e^{2v}=0 \space and \space (x^2 \space (\frac{dv}{dx})^2 \space +x \space (\frac{dv}{dx})^2 \space +x \space \space \frac{d^2v}{dx^2} \space + \space \frac{dv}{dx})=0\\ -----------------------------\\ solve \space \\ e^{2v}=0 \\ no \space solution \space exist \space (exponential \space terms \space never \space become \space to \space zero \space so \space we \space say \space no \space solution \space exist)\\ let \space \frac{dv}{dx}=u\\ which \space gives \space \frac {d^2v}{dx^2}=\frac{du}{dx} \\ subtract \space x^2 \space u^2 \space + \space x \space u^2 \space from \space both \space sides:\\ x \space \frac {du}{dx}+u= \space -x(x+1)u^2\\ divide \space both \space sides \space by \space -xu^2\\ -\frac{\frac{du}{dx}}{u^2}-\frac{1}{xu}=x+1 \\ let \space w=\frac {1}{u} \space which \space gives \space \frac{dw}{dx}=-\frac{\frac{du}{dx}}{u^2} \\ \frac{dw}{dx}-\frac{w}{x}=x+1\\ let \space \mu= \space e^{\int \space {-\frac{1 \space }{x}dx}}=\frac{1}{x}\\ multiply \space both \space side \space by \space \mu \space \\ \frac{\frac{dw}{dx}}{x}-\frac{w}{x^2}=-(\frac{-x-1}{x})\\ substitute \space -\frac{1}{x^2}=\frac{d(\frac{1}{x})}{dx}\\ \frac{\frac{dw}{dx}}{x}+\frac{d(\frac{1}{x})}{dx}w=-(\frac{-x-1}{x})\\ apply \space the \space reverse \space product \space rule \space f \space \frac{dg}{dx} \space + \space g \space \frac{df}{dx}=\frac{d(fg)}{dx} \space to \space the \space \space left \space hand \space side \space \\ \frac{d(\frac{w}{x})}{dx}=-(\frac{-x-1}{x})\\ integrate \space both \space sides \space with \space respect \space to \space x\\ \int \space \space {\frac{d(\frac{w}{x})}{dx}}=\int \space {\frac{-(-x-1)}{x}}dx\\ evalute \space the \space integral \space \\ \frac{w}{x}=x+ \space log \space x \space + \space c_1 \space \\ divide \space both \space side \space by \space \mu \space =\frac{1}{x}\\ w=x \space (x+log \space x \space + \space c_1 \space ) \\ \space solve \space for \space u\\ u= \space \frac{1}{w}= \space \frac {1}{x(x+log \space x \space )+c_1}\\ substitute \space back \space for \space \frac{dv}{dx}=u\\ \frac{dv}{dx}=\frac{1}{x(x+log \space x)+c_1}\\ integrate \space both \space side \space with \space respect \space to \space x\\ v=\int \space {\frac{1}{x(x+log \space x)+c_1}}dx \space +c_2\\ substitute \space back \space for \space y \space = \space e^{v} \space , \space which \space give \space v= \space log \space (y)\\ log \space y=\int \space \space {\frac{1}{x(x+log \space x)+c_1}}dx \space +c_2\\ solve \space for \space y \space \\ y=e^{\int \space \space {\frac{1}{x(x+log \space x)+c_1}}dx \space +c_2}\\ it \space is \space required \space answer, \space here \space not \space neccesary \space solve \space this \space further.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS