Let us solve the differential equation dxdy=−2xy+3y22x2+y2, which is equivalent to dxdy=−2xy+3(xy)22+(xy)2. Let us use the transformation y=ux. Then dxdy=dxdux+u. We get the equation dxdux+u=−2u+3u22+u2, which is equivalent to dxdux=−2u+3u22+u2−u, and hence to dxdux=−2u+3u22+u2+2u2−3u3. Then we have the equation 2+3u2−3u3−2u+3u2du=xdx. It follows that
∫2+3u2−3u3−2u+3u2du=∫xdx
−31∫2+3u2−3u36u−9u2du=∫xdx
−31∫2+3u2−3u3d(2+3u2−3u3)=∫xdx
ln∣x∣=−31ln∣2+3u2−3u3∣+ln∣C∣
ln∣x∣+31ln∣2+3u2−3u3∣=ln∣C∣
ln∣x(2+3u2−3u3)31∣=ln∣C∣
x32+3u2−3u3=C
x32+3(xy)2−3(xy)3=C
32x3+3y2x−3y3=C
It follows that the general solution of the differential equation dxdy=−2xy+3y22x2+y2 is
Comments