Question #222892
solve differential equation dy/dx=(2x^2+y^2)/(-2xy+3y^2)
1
Expert's answer
2021-08-04T12:32:28-0400

Let us solve the differential equation dydx=2x2+y22xy+3y2,\frac{dy}{dx}=\frac{2x^2+y^2}{-2xy+3y^2}, which is equivalent to dydx=2+(yx)22yx+3(yx)2.\frac{dy}{dx}=\frac{2+(\frac{y}{x})^2}{-2\frac{y}{x}+3(\frac{y}{x})^2}. Let us use the transformation y=ux.y=ux. Then dydx=dudxx+u.\frac{dy}{dx}=\frac{du}{dx}x+u. We get the equation dudxx+u=2+u22u+3u2,\frac{du}{dx}x+u=\frac{2+u^2}{-2u+3u^2}, which is equivalent to dudxx=2+u22u+3u2u,\frac{du}{dx}x=\frac{2+u^2}{-2u+3u^2}-u, and hence to dudxx=2+u2+2u23u32u+3u2.\frac{du}{dx}x=\frac{2+u^2+2u^2-3u^3}{-2u+3u^2}. Then we have the equation 2u+3u22+3u23u3du=dxx.\frac{-2u+3u^2}{2+3u^2-3u^3}du=\frac{dx}{x}. It follows that


2u+3u22+3u23u3du=dxx\int\frac{-2u+3u^2}{2+3u^2-3u^3}du=\int\frac{dx}{x}


136u9u22+3u23u3du=dxx-\frac{1}{3}\int\frac{6u-9u^2}{2+3u^2-3u^3}du=\int\frac{dx}{x}


13d(2+3u23u3)2+3u23u3=dxx-\frac{1}{3}\int\frac{d(2+3u^2-3u^3)}{2+3u^2-3u^3}=\int\frac{dx}{x}


lnx=13ln2+3u23u3+lnC\ln|x|=-\frac{1}{3}\ln|2+3u^2-3u^3|+\ln|C|


lnx+13ln2+3u23u3=lnC\ln|x|+\frac{1}{3}\ln|2+3u^2-3u^3|=\ln|C|


lnx(2+3u23u3)13=lnC\ln|x(2+3u^2-3u^3)^{\frac{1}{3}}|=\ln|C|


x2+3u23u33=Cx\sqrt[3]{2+3u^2-3u^3}=C


x2+3(yx)23(yx)33=Cx\sqrt[3]{2+3(\frac{y}{x})^2-3(\frac{y}{x})^3}=C


2x3+3y2x3y33=C\sqrt[3]{2x^3+3y^2x-3y^3}=C


It follows that the general solution of the differential equation dydx=2x2+y22xy+3y2\frac{dy}{dx}=\frac{2x^2+y^2}{-2xy+3y^2} is


2x3+3y2x3y3=C.2x^3+3y^2x-3y^3=C.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS