Question #222805

Show by wronskian that the following functions are linearly independent over all reals: e^axcosbx,e^axsinbx


1
Expert's answer
2021-08-11T17:27:15-0400
f1(x)=eaxcosbx,f2(x)=eaxsinbxf_1(x)=e^{ax}\cos bx, f_2(x)=e^{ax}\sin bx


(eaxcosbx)=aeaxcosbxbeaxsinbx(e^{ax}\cos bx)'=ae^{ax}\cos bx-be^{ax}\sin bx

(eaxsinbx)=aeaxsinbx+beaxcosbx(e^{ax}\sin bx)'=ae^{ax}\sin bx+be^{ax}\cos bx


W(f1,f2)=f1f2f1f2W(f_1, f_2)=\begin{vmatrix} f_1 & f_2 \\ f_1' & f_2' \end{vmatrix}

=eaxcosbxeaxsinbxaeaxcosbxbeaxsinbxaeaxsinbx+beaxcosbx=\begin{vmatrix} e^{ax}\cos bx & e^{ax}\sin bx \\ a e^{ax}\cos bx-be^{ax}\sin bx & ae^{ax}\sin bx+be^{ax}\cos bx \end{vmatrix}

=ae2axsinbxcosbx+be2axcos2bx=ae^{2ax}\sin bx\cos bx+be^{2ax}\cos^2 bx

ae2axsinbxcosbx+be2axsin2bx-ae^{2ax}\sin bx\cos bx+be^{2ax}\sin^2 bx

=be2ax0,b0,xR=be^{2ax}\not =0, b\not=0, x\in \R

Since W(f1,f2)0,b0,xR,W(f_1, f_2)\not=0, b\not=0, x\in \R, then  the given functions are linearly independent over all reals if b0.b\not=0.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS