f1(x)=eaxcosbx,f2(x)=eaxsinbx
(eaxcosbx)′=aeaxcosbx−beaxsinbx
(eaxsinbx)′=aeaxsinbx+beaxcosbx
W(f1,f2)=∣∣f1f1′f2f2′∣∣
=∣∣eaxcosbxaeaxcosbx−beaxsinbxeaxsinbxaeaxsinbx+beaxcosbx∣∣
=ae2axsinbxcosbx+be2axcos2bx
−ae2axsinbxcosbx+be2axsin2bx
=be2ax=0,b=0,x∈R Since W(f1,f2)=0,b=0,x∈R, then the given functions are linearly independent over all reals if b=0.
Comments