f 1 ( x ) = e a x cos b x , f 2 ( x ) = e a x sin b x f_1(x)=e^{ax}\cos bx, f_2(x)=e^{ax}\sin bx f 1 ( x ) = e a x cos b x , f 2 ( x ) = e a x sin b x
( e a x cos b x ) ′ = a e a x cos b x − b e a x sin b x (e^{ax}\cos bx)'=ae^{ax}\cos bx-be^{ax}\sin bx ( e a x cos b x ) ′ = a e a x cos b x − b e a x sin b x
( e a x sin b x ) ′ = a e a x sin b x + b e a x cos b x (e^{ax}\sin bx)'=ae^{ax}\sin bx+be^{ax}\cos bx ( e a x sin b x ) ′ = a e a x sin b x + b e a x cos b x
W ( f 1 , f 2 ) = ∣ f 1 f 2 f 1 ′ f 2 ′ ∣ W(f_1, f_2)=\begin{vmatrix}
f_1 & f_2 \\
f_1' & f_2'
\end{vmatrix} W ( f 1 , f 2 ) = ∣ ∣ f 1 f 1 ′ f 2 f 2 ′ ∣ ∣
= ∣ e a x cos b x e a x sin b x a e a x cos b x − b e a x sin b x a e a x sin b x + b e a x cos b x ∣ =\begin{vmatrix}
e^{ax}\cos bx & e^{ax}\sin bx \\
a e^{ax}\cos bx-be^{ax}\sin bx & ae^{ax}\sin bx+be^{ax}\cos bx
\end{vmatrix} = ∣ ∣ e a x cos b x a e a x cos b x − b e a x sin b x e a x sin b x a e a x sin b x + b e a x cos b x ∣ ∣
= a e 2 a x sin b x cos b x + b e 2 a x cos 2 b x =ae^{2ax}\sin bx\cos bx+be^{2ax}\cos^2 bx = a e 2 a x sin b x cos b x + b e 2 a x cos 2 b x
− a e 2 a x sin b x cos b x + b e 2 a x sin 2 b x -ae^{2ax}\sin bx\cos bx+be^{2ax}\sin^2 bx − a e 2 a x sin b x cos b x + b e 2 a x sin 2 b x
= b e 2 a x ≠ 0 , b ≠ 0 , x ∈ R =be^{2ax}\not =0, b\not=0, x\in \R = b e 2 a x = 0 , b = 0 , x ∈ R Since W ( f 1 , f 2 ) ≠ 0 , b ≠ 0 , x ∈ R , W(f_1, f_2)\not=0, b\not=0, x\in \R, W ( f 1 , f 2 ) = 0 , b = 0 , x ∈ R , then the given functions are linearly independent over all reals if b ≠ 0. b\not=0. b = 0.
Comments