Question #222725

solve

xy'+2y=x2lnx


1
Expert's answer
2021-08-09T14:47:21-0400

xy+2y=x2lnxxy'+2y=x^2\ln x

x2y+2xy=x3lnxx^2y'+2xy=x^3\ln x

(x2y)=x3lnx(x^2y)'=x^3\ln x

x2y=x3lnxdx=14lnxdx4=x44lnx14x4dlnx=x^2y=\int x^3\ln x dx=\frac{1}{4}\int \ln x dx^4=\frac{x^4}{4}\ln x-\frac{1}{4}\int x^4d\ln x=

=x44lnx14x3dx=x44lnxx416+C=\frac{x^4}{4}\ln x-\frac{1}{4}\int x^3dx=\frac{x^4}{4}\ln x-\frac{x^4}{16}+C

y=x216(4lnx1)+Cx2y=\frac{x^2}{16}(4\ln x-1)+Cx^{-2}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS