Solution;
Auxiliary equation is ;
m2−2m−8=0
m2−4m+2m−8=0
m(m−4)+2(m−4)=0
(m+2)(m−4)=0
m=-2,4
yh=C1e4x+C2e−2x
The particular solution;
y1=e4x
y2=e−2x
g(x)=4e2x−21e−3x
W(y1,y2)=det∣∣e4x4e4xe−2x−2e−2x∣∣ =−2e2x−4e2x=−6e2x
W1=det∣∣04e2x−21e−3xe−2x−2e−2x∣∣=−e−2x(4e2x−21e−3x)=−1+21e−5x
W2=det∣∣e4x4e4x04e2x−21e−3x∣∣=e4x(4e2x−21e−3x)=4e6x−21ex
Let;
u1=∫WW1dx=∫−6e2x−1+21e−5xdx=61∫e−2xdx−621∫e−7xdx
u1=12−e−2x+2e−7x
u2=∫WW2dx=∫−6e2x4e6x−21ex=6−4∫e4xdx+27∫e−xdx
u2=−61e4x−27e−x
Let;
yp=u1y1+u2y2
yp=(2e−7x−12e−2x)e4x+(−61e4x−27e−x)e−2x
yp=−4e2x−3e−3x
The general solution is;
y=yh+yp
y=C1e4x+C2e−2x−4e2x−3e−3x
Comments