Question #222717

y''-2y'-8y=4e2x-21e-3x

1
Expert's answer
2021-08-08T18:00:14-0400

Solution;

Auxiliary equation is ;

m22m8=0m^2-2m-8=0

m24m+2m8=0m^2-4m+2m-8=0

m(m4)+2(m4)=0m(m-4)+2(m-4)=0

(m+2)(m4)=0(m+2)(m-4)=0

m=-2,4

yh=C1e4x+C2e2xy_h=C_1e^{4x}+C_2e^{-2x}

The particular solution;

y1=e4xy_1=e^{4x}

y2=e2xy_2=e^{-2x}

g(x)=4e2x21e3xg(x)=4e^{2x}-21e^{-3x}

W(y1,y2)=dete4xe2x4e4x2e2xW(y_1,y_2)=det\begin{vmatrix} e^{4x}& e^{-2x} \\ 4e^{4x} & -2e^{-2x} \end{vmatrix} =2e2x4e2x=6e2x=-2e^{2x}-4e^{2x}=-6e^{2x}

W1=det0e2x4e2x21e3x2e2x=e2x(4e2x21e3x)=1+21e5xW_1=det\begin{vmatrix} 0 & e^{-2x}\\ 4e^{2x}-21e^{-3x} & -2e^{-2x} \end{vmatrix}=-e^{-2x}(4e^{2x}-21e^{-3x})=-1+21e^{-5x}

W2=dete4x04e4x4e2x21e3x=e4x(4e2x21e3x)=4e6x21exW_2=det\begin{vmatrix} e^{4x} & 0 \\ 4e^{4x} & 4e^{2x}-21e^{-3x} \end{vmatrix}=e^{4x}(4e^{2x}-21e^{-3x})=4e^{6x}-21e^{x}

Let;

u1=W1Wdx=1+21e5x6e2xdx=16e2xdx216e7xdxu_1=\int\frac{W_1}{W}dx=\int\frac{-1+21e^{-5x}}{-6e^{2x}}dx=\frac16\int e^{-2x}dx-\frac{21}6\int e^{-7x}dx

u1=e2x12+e7x2u_1=\frac{-e^{-2x}}{12}+\frac{e^{-7x}}{2}

u2=W2Wdx=4e6x21ex6e2x=46e4xdx+72exdxu_2=\int\frac{W_2}{W}dx=\int\frac{4e^{6x}-21e^x}{-6e^{2x}}=\frac{-4}6\int e^{4x}dx+\frac72\int e^{-x}dx

u2=16e4x72exu_2=-\frac16e^{4x}-\frac72e^{-x}

Let;

yp=u1y1+u2y2y_p=u_1y_1+u_2y_2

yp=(e7x2e2x12)e4x+(16e4x72ex)e2xy_p=(\frac{e^{-7x}}{2}-\frac{e^{-2x}}{12})e^{4x}+(-\frac16e^{4x}-\frac72e^{-x})e^{-2x}

yp=e2x43e3xy_p=-\frac{e^{2x}}{4}-3e^{-3x}

The general solution is;

y=yh+ypy=y_h+y_p

y=C1e4x+C2e2xe2x43e3xy=C_1e^{4x}+C_2e^{-2x}-\frac{e^{2x}}{4}-3e^{-3x}







Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS