Question #222708

Find the general solution

1) x3y'''-4x2y''+8xy'-8y=4lnx


1
Expert's answer
2021-08-05T17:19:41-0400

Let us solve the differential equation x3y4x2y+8xy8y=4lnx.x^3y'''-4x^2y''+8xy'-8y=4\ln x. Let us use the transformation x=et.x=e^t. Then yx=yttx=yt1xt=ytet,y'_x=y'_t\cdot t'_x=y'_t\cdot \frac{1}{x'_t}=y'_t\cdot e^{-t}, yx2=(yt2etytet)et=(yt2yt)e2t,y''_{x^2}=(y''_{t^2}\cdot e^{-t}-y'_t\cdot e^{-t})e^{-t}=(y''_{t^2}-y'_t)e^{-2t}, yx3=(yt33yt2+2yt)e3t.y'''_{x^3}=(y'''_{t^3}-3y''_{t^2}+2y'_t)e^{-3t}.

It follows that we have the following equation e3t(yt33yt2+2yt)e3t4e2t(yt2yt)e2t+8etytet8y=4t,e^{3t}(y'''_{t^3}-3y''_{t^2}+2y'_t)e^{-3t}-4e^{2t}(y''_{t^2}-y'_t)e^{-2t}+8e^ty'_te^{-t}-8y=4t, which is equivalent to the equation yt37yt2+14yt8y=4t.y'''_{t^3}-7y''_{t^2}+14y'_t-8y=4t. The characteristic equation k37k2+14k8=0k^3-7k^2+14k-8=0 is equivalent to (k1)(k26k+8)=0,(k-1)(k^2-6k+8)=0, and to (k1)(k2)(k4)=0,(k-1)(k-2)(k-4)=0, and hence has the roots k1=1,k2=2k_1=1, k_2=2 and k3=4.k_3=4. The general solution of the differential equation yt37yt2+14yt8y=4ty'''_{t^3}-7y''_{t^2}+14y'_t-8y=4t is y(t)=C1et+C2e2t+C3e4t+yp(t),y(t)=C_1e^t+C_2e^{2t}+C_3e^{4t}+y_p(t), where yp(t)=at+b.y_p(t)=at+b.\\ It follows that yp(t)=a,yp(t)=0,yp(t)=0.y_p'(t)=a,y_p''(t)=0,y_p'''(t)=0. We have that 14a8(at+b)=4t.14a-8(at+b)=4t. Then 8a=4,14a8b=0,-8a=4, 14a-8b=0, and thus a=12,b=74a=78.a=-\frac{1}{2}, b=\frac{7}{4}a=-\frac{7}{8}. Therefore, y(t)=C1et+C2e2t+C3e4t12t78.y(t)=C_1e^t+C_2e^{2t}+C_3e^{4t}-\frac{1}{2}t-\frac{7}{8}.\\ We conclude that the general solutions of the differential equation x3y4x2y+8xy8y=4lnxx^3y'''-4x^2y''+8xy'-8y=4\ln x is y(x)=C1x+C2x2+C3x412lnx78.y(x)=C_1x+C_2x^2+C_3x^4-\frac{1}{2}\ln x-\frac{7}{8}.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS