x 2 y ′ ′ + x y ′ + 4 y = 2 x ln x x^2y''+xy'+4y=2x\ln x x 2 y ′′ + x y ′ + 4 y = 2 x ln x Homogeneous equation
x 2 y ′ ′ + x y ′ + 4 y = 0 x^2y''+xy'+4y=0 x 2 y ′′ + x y ′ + 4 y = 0
Let y = x r y=x^r y = x r
y ′ = r x r − 1 y'=rx^{r-1} y ′ = r x r − 1
y ′ ′ = r ( r − 1 ) x r − 2 y''=r(r-1)x^{r-2} y ′′ = r ( r − 1 ) x r − 2
r ( r − 1 ) + r + 4 = 0 r(r-1)+r+4=0 r ( r − 1 ) + r + 4 = 0
r = ± 2 i r=\pm2 i r = ± 2 i The general solution of the homogeneous equation is
y h = C 1 cos ( 2 ln x ) + C 2 sin ( 2 ln x ) y_h=C_1\cos(2\ln x)+C_2\sin(2\ln x) y h = C 1 cos ( 2 ln x ) + C 2 sin ( 2 ln x )
x 2 y ′ ′ + x y ′ + 4 y = 2 x ln x x^2y''+xy'+4y=2x\ln x x 2 y ′′ + x y ′ + 4 y = 2 x ln x Divide both sides by x 2 x^2 x 2
y ′ ′ + 1 x y ′ + 4 x 2 y = 2 x ln x = > g ( x ) = 2 x ln x y''+\dfrac{1}{x}y'+\dfrac{4}{x^2}y=\dfrac{2}{x}\ln x=>g(x)=\dfrac{2}{x}\ln x y ′′ + x 1 y ′ + x 2 4 y = x 2 ln x => g ( x ) = x 2 ln x Wronskian
W ( y 1 , y 2 ) = ∣ cos ( 2 ln x ) sin ( 2 ln x ) − 2 x sin ( 2 ln x ) 2 x cos ( 2 ln x ) ∣ = 2 x W(y_1, y_2)=\begin{vmatrix}
\cos(2\ln x)& \sin(2\ln x) \\
- \dfrac{2}{x}\sin (2\ln x) & \dfrac{2}{x}\cos(2\ln x)
\end{vmatrix}=\dfrac{2}{x} W ( y 1 , y 2 ) = ∣ ∣ cos ( 2 ln x ) − x 2 sin ( 2 ln x ) sin ( 2 ln x ) x 2 cos ( 2 ln x ) ∣ ∣ = x 2
W 1 = ∣ 0 sin ( 2 ln x ) 2 x ln x 2 x cos ( 2 ln x ) ∣ = − 2 x ln x sin ( 2 ln x ) W_1=\begin{vmatrix}
0& \sin(2\ln x) \\
\dfrac{2}{x}\ln x & \dfrac{2}{x}\cos(2\ln x)
\end{vmatrix}=-\dfrac{2}{x}\ln x \sin(2\ln x) W 1 = ∣ ∣ 0 x 2 ln x sin ( 2 ln x ) x 2 cos ( 2 ln x ) ∣ ∣ = − x 2 ln x sin ( 2 ln x )
W 2 = ∣ cos ( 2 ln x ) 0 − 2 x sin ( 2 ln x ) 2 x ln x ∣ = 2 x ln x cos ( 2 ln x ) W_2=\begin{vmatrix}
\cos(2\ln x) & 0 \\
- \dfrac{2}{x}\sin (2\ln x) & \dfrac{2}{x}\ln x
\end{vmatrix}=\dfrac{2}{x}\ln x \cos(2\ln x) W 2 = ∣ ∣ cos ( 2 ln x ) − x 2 sin ( 2 ln x ) 0 x 2 ln x ∣ ∣ = x 2 ln x cos ( 2 ln x )
u 1 = ∫ W 1 W d x = ∫ − 2 x ln x sin ( 2 ln x ) 2 x d x u_1=\int\dfrac{W_1}{W}dx=\int\dfrac{-\dfrac{2}{x}\ln x \sin(2\ln x)}{\dfrac{2}{x}}dx u 1 = ∫ W W 1 d x = ∫ x 2 − x 2 ln x sin ( 2 ln x ) d x
= − ∫ ln x sin ( 2 ln x ) d x =-\int \ln x \sin(2\ln x)dx = − ∫ ln x sin ( 2 ln x ) d x
= − 1 25 x ( 5 ln x + 3 ) sin ( 2 ln x ) + 1 25 ( 10 ln x − 4 ) cos ( 2 ln x ) =-\dfrac{1}{25}x(5\ln x+3)\sin(2\ln x)+\dfrac{1}{25}(10\ln x-4)\cos(2\ln x) = − 25 1 x ( 5 ln x + 3 ) sin ( 2 ln x ) + 25 1 ( 10 ln x − 4 ) cos ( 2 ln x )
u 2 = ∫ W 2 W d x = ∫ 2 x ln x cos ( 2 ln x ) 2 x d x u_2=\int\dfrac{W_2}{W}dx=\int\dfrac{\dfrac{2}{x}\ln x \cos(2\ln x)}{\dfrac{2}{x}}dx u 2 = ∫ W W 2 d x = ∫ x 2 x 2 ln x cos ( 2 ln x ) d x
= ∫ ln x cos ( 2 ln x ) d x =\int \ln x \cos(2\ln x)dx = ∫ ln x cos ( 2 ln x ) d x
= 1 25 x ( 10 ln x − 4 ) sin ( 2 ln x ) + 1 25 ( 5 ln x + 3 ) cos ( 2 ln x ) =\dfrac{1}{25}x(10\ln x-4)\sin(2\ln x)+\dfrac{1}{25}(5\ln x+3)\cos(2\ln x) = 25 1 x ( 10 ln x − 4 ) sin ( 2 ln x ) + 25 1 ( 5 ln x + 3 ) cos ( 2 ln x )
Particular solution of the non-homogeneous equation is
y p = u 1 y 1 + u 2 y 2 y_p=u_1y_1+u_2y_2 y p = u 1 y 1 + u 2 y 2
y p = − 1 25 x ( 5 ln x + 3 ) sin ( 2 ln x ) cos ( 2 ln x ) y_p=-\dfrac{1}{25}x(5\ln x+3)\sin(2\ln x)\cos(2\ln x) y p = − 25 1 x ( 5 ln x + 3 ) sin ( 2 ln x ) cos ( 2 ln x )
+ 1 25 ( 10 ln x − 4 ) cos 2 ( 2 ln x ) +\dfrac{1}{25}(10\ln x-4)\cos^2(2\ln x) + 25 1 ( 10 ln x − 4 ) cos 2 ( 2 ln x )
+ 1 25 x ( 10 ln x − 4 ) sin 2 ( 2 ln x ) +\dfrac{1}{25}x(10\ln x-4)\sin^2(2\ln x) + 25 1 x ( 10 ln x − 4 ) sin 2 ( 2 ln x )
+ 1 25 ( 5 ln x + 3 ) sin ( 2 ln x ) cos ( 2 ln x ) +\dfrac{1}{25}(5\ln x+3)\sin(2\ln x)\cos(2\ln x) + 25 1 ( 5 ln x + 3 ) sin ( 2 ln x ) cos ( 2 ln x ) The general solution of the homogeneous equation is
y = C 1 cos ( 2 ln x ) + C 2 sin ( 2 ln x ) y=C_1\cos(2\ln x)+C_2\sin(2\ln x) y = C 1 cos ( 2 ln x ) + C 2 sin ( 2 ln x )
− 1 25 x ( 5 ln x + 3 ) sin ( 2 ln x ) cos ( 2 ln x ) -\dfrac{1}{25}x(5\ln x+3)\sin(2\ln x)\cos(2\ln x) − 25 1 x ( 5 ln x + 3 ) sin ( 2 ln x ) cos ( 2 ln x )
+ 1 25 ( 10 ln x − 4 ) cos 2 ( 2 ln x ) +\dfrac{1}{25}(10\ln x-4)\cos^2(2\ln x) + 25 1 ( 10 ln x − 4 ) cos 2 ( 2 ln x )
+ 1 25 x ( 10 ln x − 4 ) sin 2 ( 2 ln x ) +\dfrac{1}{25}x(10\ln x-4)\sin^2(2\ln x) + 25 1 x ( 10 ln x − 4 ) sin 2 ( 2 ln x )
+ 1 25 ( 5 ln x + 3 ) sin ( 2 ln x ) cos ( 2 ln x ) +\dfrac{1}{25}(5\ln x+3)\sin(2\ln x)\cos(2\ln x) + 25 1 ( 5 ln x + 3 ) sin ( 2 ln x ) cos ( 2 ln x )
Comments