Question #222704

y''+3y'+2y= 1/(1+ex)


1
Expert's answer
2021-08-05T13:54:14-0400

Related homogeneous differential equation


y+3y+2y=0y''+3y'+2y=0

The roots of the characteristic equation are


r2+3r+2=0r^2+3r+2=0

(r+1)(r+2)=0(r+1)(r+2)=0

r1=2,r2=1r_1=-2,r_2=-1

The general solution of the homogeneous differential equation is


yh=c1e2x+c2exy_h=c_1e^{-2x}+c_2e^{-x}

Use the method of variation of parameters


c1e2x+c2ex=0c_1'e^{-2x}+c_2'e^{-x}=0

c1(e2x)+c2(ex)=11+exc_1'(e^{-2x})'+c_2'(e^{-x})'=\dfrac{1}{1+e^x}


Then


c2ex=c1e2xc_2'e^{-x}=-c_1'e^{-2x}

2c1e2x+c1e2x=11+ex-2c_1'e^{-2x}+c_1'e^{-2x}=\dfrac{1}{1+e^x}

c1=e2x1+exc_1'=-\dfrac{e^{2x}}{1+e^x}

c1=e2x1+exdx=ln(ex+1)ex+C1c_1=-\int\dfrac{e^{2x}}{1+e^x}dx=\ln(e^x+1)-e^x+C_1

c2=ex1+exc_2'=\dfrac{e^{x}}{1+e^x}

c2=ex1+exdx=ln(ex+1)+C2c_2=\int\dfrac{e^{x}}{1+e^x}dx=\ln(e^x+1)+C_2

The general solution of the homogeneous differential equation is


y=e2xln(ex+1)+C1e2x+exln(ex+1)+C3exy=e^{-2x}\ln(e^x+1)+C_1e^{-2x}+e^{-x}\ln(e^x+1)+C_3e^{-x}





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS