y′′−2y′+y=exarcsinxThe auxiliary equation ism2−2m+1=0(m−1)2=0m=1twicey=ex(C1+xC2)Wronskian(ex,xex)=e2xLetC1andC2befunctionsK1andK2.K1=−∫e2xxex×exarcsinxdx=−∫xarcsinxdxandK2=∫e2xex×exarcsinxdx=∫arcsinxdxForK1,Letx=sinu⟹d(sinu)=cosuduK1=−∫xarcsinxdx=−∫usinucosudu=−21∫usin2udu=21∫ud(2cos2u)=4ucos2u−41∫cos2udu=4ucos2u−8sin2u+C=4arcsinxcos(2arcsinx)−8sin(2arcsinx)+C1ForK2Letx=sinu⟹d(sinu)=cosuduK2=∫arcsinxdx=∫ucosudu=usinu−∫sinudu=usinu+cosu+C=xarcsinx+cos(arcsinx)+C2Buty=exK1+xexK2⟹y=ex(4arcsinxcos(2arcsinx)−8sin(2arcsinx)+C1)+xex(xarcsinx+cos(arcsinx)+C2)=C1ex+C2xex+4exarcsinxcos(2arcsinx)−8exsin(2arcsinx)+x2exarcsinx+xexcos(arcsinx)Note that the following holdscos(2arcsin(x))=1−2x2sin(2arcsin(x))=2x1−x2cos(arcsin(x))=1−x2Substituting the above inyy=C1ex+C2xex+4exarcsinx(1−2x2)−82xex1−x2+x2exarcsinx+xex1−x2=C1ex+C2xex+4exarcsinx−2x2exarcsinx−4xex1−x2+x2exarcsinx+xex1−x2=C1ex+C2xex+4exarcsinx+2x2exarcsinx+43xex1−x2⟹y=C1ex+C2xex+43xex1−x2+2x2exarcsinx+4exarcsinx
The expert did excellent work as usual and was extremely helpful for me.
"Assignmentexpert.com" has experienced experts and professional in the market. Thanks.
Comments