We have (D2 + 1)y = tanx A.E. is m2 + 1 = 0 i.e., m2 = – 1 i.e., m = ± i C.F. is C.F. = yc = C1cos x + C2sinx ∴ y = A cos x + B sinx ...(1) be the complete solution of the given equation where A and B are to be found We have y1 = cos x and y2 = sin x y′1 = – sinx y′2 = cos x W = y1y2′ − y2y1′ = cos x . cos x + sin x . sin x = cos2x + sin2x = 1 also ϕ (x)= tan x A′ = W−y2 ϕ (x) = 1−sin x tan x A′ = cos x−sin 2 x A = − ∫ cos xsin 2 x dx + C1 = − ∫ cos x1−cos 2 x dx + C1 = − ∫ (sec x − cos x)dx + C1 A= − [log (sec x + tan x )− sin x ]+ C1 B′ = Wy1 ϕ (x) B′ = 1cos x tan x B′=sin x B= ∫ sin x dx + C2 B= −cos x + C2 Substitute these values of A and B in Eqn. (1), we get y = [– log(secx + tanx) + sinx + C1] cosx + [– cos x + C2] sinx y= C1cos x + C2sin x – cosx log (sec x + tan x) This is the complete solution.
Comments