Question #222692

Detectives have discovered the murder victim in juja at 6:30 am and the body temperature of the victim was then 260celcius after 30minutes the police surgeon arrived and found the body temperature to be 230 Celsius. If the air temperature was 160 Celsius throughout and the normal body temperature is 370 Celsius at what time did the police surgeon estimate that the crime had occurred(victim murdered)?


1
Expert's answer
2021-08-04T13:11:05-0400

At 6:30 a.m, t = 0 and the temperature T0=260CAfter 30 minutes t = 0.5hr and the temperature T0=230C and the room temperatureThe change in temperature is given by dTdt=k(TTc)=k(T16)Integrating, we have thatIn(T16)=kt+cTaking exponents, we haveT16=Aekt where, A=ec, thereforeT=Aekt+16when t=0 and T0=260C, we have that A = 10    T=Aekt+16when t=0.5 and T0=230C, we have that k = 0.7133    T=10e0.7133t+16To calculate the time of death, we take T as normal body temperature and we compute t37=10e0.7133t+16Hence, t=1.040hr, therefore the death occured about 1 hour before 6:30 a.m\text{At 6:30 a.m, t = 0 and the temperature $T_0=26^0C$} \\\text{After 30 minutes t = 0.5hr and the temperature $T_0=23^0C$ and the room temperature}\\\text{The change in temperature is given by }\\\frac{dT}{dt}=-k(T-T_c)=-k(T-16)\\\text{Integrating, we have that}\\In(T-16)=-kt+c\\\text{Taking exponents, we have}\\T-16=Ae^{-kt}\text{ where, $A=e^c$, therefore}\\T=Ae^{-kt}+16 \\\text{when t=0 and $T_0=26^0C$, we have that A = 10}\\\implies T=Ae^{-kt}+16 \\\text{when t=0.5 and $T_0=23^0C$, we have that k = 0.7133}\\\implies T=10e^{-0.7133t}+16 \\\text{To calculate the time of death, we take T as normal body temperature and we }\\\text{compute t}\\37=10e^{-0.7133t}+16 \\\text{Hence, $t=-1.040hr$, therefore the death occured about 1 hour before 6:30 a.m}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS